These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 31864736)

  • 1. Accuracy of methane emissions predicted from milk mid-infrared spectra and measured by laser methane detectors in Brown Swiss dairy cows.
    Denninger TM; Schwarm A; Dohme-Meier F; Münger A; Bapst B; Wegmann S; Grandl F; Vanlierde A; Sorg D; Ortmann S; Clauss M; Kreuzer M
    J Dairy Sci; 2020 Feb; 103(2):2024-2039. PubMed ID: 31864736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistence of differences between dairy cows categorized as low or high methane emitters, as estimated from milk mid-infrared spectra and measured by GreenFeed.
    Denninger TM; Dohme-Meier F; Eggerschwiler L; Vanlierde A; Grandl F; Gredler B; Kreuzer M; Schwarm A; Münger A
    J Dairy Sci; 2019 Dec; 102(12):11751-11765. PubMed ID: 31587911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short communication: Development of an equation for estimating methane emissions of dairy cows from milk Fourier transform mid-infrared spectra by using reference data obtained exclusively from respiration chambers.
    Vanlierde A; Soyeurt H; Gengler N; Colinet FG; Froidmont E; Kreuzer M; Grandl F; Bell M; Lund P; Olijhoek DW; Eugène M; Martin C; Kuhla B; Dehareng F
    J Dairy Sci; 2018 Aug; 101(8):7618-7624. PubMed ID: 29753478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra.
    Vanlierde A; Vanrobays ML; Dehareng F; Froidmont E; Soyeurt H; McParland S; Lewis E; Deighton MH; Grandl F; Kreuzer M; Gredler B; Dardenne P; Gengler N
    J Dairy Sci; 2015 Aug; 98(8):5740-7. PubMed ID: 26026761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Starch and dextrose at 2 levels of rumen-degradable protein in iso-nitrogenous diets: Effects on lactation performance, ruminal measurements, methane emission, digestibility, and nitrogen balance of dairy cows.
    Sun F; Aguerre MJ; Wattiaux MA
    J Dairy Sci; 2019 Feb; 102(2):1281-1293. PubMed ID: 30591340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving robustness and accuracy of predicted daily methane emissions of dairy cows using milk mid-infrared spectra.
    Vanlierde A; Dehareng F; Gengler N; Froidmont E; McParland S; Kreuzer M; Bell M; Lund P; Martin C; Kuhla B; Soyeurt H
    J Sci Food Agric; 2021 Jun; 101(8):3394-3403. PubMed ID: 33222175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dairy system, parity, and lactation stage affect enteric methane production, yield, and intensity per kilogram of milk and cheese predicted from gas chromatography fatty acids.
    Bittante G; Cecchinato A; Schiavon S
    J Dairy Sci; 2018 Feb; 101(2):1752-1766. PubMed ID: 29224867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Between-cow variation in digestion and rumen fermentation variables associated with methane production.
    Cabezas-Garcia EH; Krizsan SJ; Shingfield KJ; Huhtanen P
    J Dairy Sci; 2017 Jun; 100(6):4409-4424. PubMed ID: 28390728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological implications of longevity in dairy cows: 2. Changes in methane emissions and efficiency with age.
    Grandl F; Amelchanka SL; Furger M; Clauss M; Zeitz JO; Kreuzer M; Schwarm A
    J Dairy Sci; 2016 May; 99(5):3472-3485. PubMed ID: 26923053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane, and carbon dioxide in lactating cows fed diets with varying alfalfa silage-to-corn silage ratios.
    Arndt C; Powell JM; Aguerre MJ; Wattiaux MA
    J Dairy Sci; 2015 Jan; 98(1):418-30. PubMed ID: 25465537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of carbohydrate type or bicarbonate addition to grass silage-based diets on enteric methane emissions and milk fatty acid composition in dairy cows.
    Bougouin A; Ferlay A; Doreau M; Martin C
    J Dairy Sci; 2018 Jul; 101(7):6085-6097. PubMed ID: 29680648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methodological guidelines: Cow milk mid-infrared spectra to predict reference enteric methane data collected by an automated head-chamber system.
    Coppa M; Vanlierde A; Bouchon M; Jurquet J; Musati M; Dehareng F; Martin C
    J Dairy Sci; 2022 Nov; 105(11):9271-9285. PubMed ID: 36175234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct and indirect predictions of enteric methane daily production, yield, and intensity per unit of milk and cheese, from fatty acids and milk Fourier-transform infrared spectra.
    Bittante G; Cipolat-Gotet C
    J Dairy Sci; 2018 Aug; 101(8):7219-7235. PubMed ID: 29803412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individual milk fatty acids are potential predictors of enteric methane emissions from dairy cows fed a wide range of diets: Approach by meta-analysis.
    Bougouin A; Appuhamy JADRN; Ferlay A; Kebreab E; Martin C; Moate PJ; Benchaar C; Lund P; Eugène M
    J Dairy Sci; 2019 Nov; 102(11):10616-10631. PubMed ID: 31477298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grape marc reduces methane emissions when fed to dairy cows.
    Moate PJ; Williams SR; Torok VA; Hannah MC; Ribaux BE; Tavendale MH; Eckard RJ; Jacobs JL; Auldist MJ; Wales WJ
    J Dairy Sci; 2014; 97(8):5073-87. PubMed ID: 24952778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invited review: Large-scale indirect measurements for enteric methane emissions in dairy cattle: A review of proxies and their potential for use in management and breeding decisions.
    Negussie E; de Haas Y; Dehareng F; Dewhurst RJ; Dijkstra J; Gengler N; Morgavi DP; Soyeurt H; van Gastelen S; Yan T; Biscarini F
    J Dairy Sci; 2017 Apr; 100(4):2433-2453. PubMed ID: 28161178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of starch-rich or lipid-supplemented diets that induce milk fat depression on rumen biohydrogenation of fatty acids and methanogenesis in lactating dairy cows.
    Bougouin A; Martin C; Doreau M; Ferlay A
    Animal; 2019 Jul; 13(7):1421-1431. PubMed ID: 30488812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.
    van Gastelen S; Visker MHPW; Edwards JE; Antunes-Fernandes EC; Hettinga KA; Alferink SJJ; Hendriks WH; Bovenhuis H; Smidt H; Dijkstra J
    J Dairy Sci; 2017 Nov; 100(11):8939-8957. PubMed ID: 28918153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between milk metabolome and methane emission of Holstein Friesian dairy cows: Metabolic interpretation and prediction potential.
    van Gastelen S; Antunes-Fernandes EC; Hettinga KA; Dijkstra J
    J Dairy Sci; 2018 Mar; 101(3):2110-2126. PubMed ID: 29290428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane production, ruminal fermentation characteristics, nutrient digestibility, nitrogen excretion, and milk production of dairy cows fed conventional or brown midrib corn silage.
    Hassanat F; Gervais R; Benchaar C
    J Dairy Sci; 2017 Apr; 100(4):2625-2636. PubMed ID: 28161179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.