These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31864922)

  • 21. Contributions of Nanoscale Roughness to Anomalous Colloid Retention and Stability Behavior.
    Bradford SA; Kim H; Shen C; Sasidharan S; Shang J
    Langmuir; 2017 Sep; 33(38):10094-10105. PubMed ID: 28846425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determining Parameters and Mechanisms of Colloid Retention and Release in Porous Media.
    Bradford SA; Torkzaban S
    Langmuir; 2015 Nov; 31(44):12096-105. PubMed ID: 26484563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling the effects of surfactant, hardness, and natural organic matter on deposition and mobility of silver nanoparticles in saturated porous media.
    Park CM; Heo J; Her N; Chu KH; Jang M; Yoon Y
    Water Res; 2016 Oct; 103():38-47. PubMed ID: 27429353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transport and deposition of stabilized engineered silver nanoparticles in water saturated loamy sand and silty loam.
    Braun A; Klumpp E; Azzam R; Neukum C
    Sci Total Environ; 2015 Dec; 535():102-12. PubMed ID: 25527873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of surface heterogeneities on reversibility of fullerene (nC60) nanoparticle attachment in saturated porous media.
    Shen C; Zhang M; Zhang S; Wang Z; Zhang H; Li B; Huang Y
    J Hazard Mater; 2015 Jun; 290():60-8. PubMed ID: 25746565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age.
    Mitzel MR; Tufenkji N
    Environ Sci Technol; 2014; 48(5):2715-23. PubMed ID: 24552618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of rain intensity and soil colloids in the retention of surfactant-stabilized silver nanoparticles in soil.
    Makselon J; Siebers N; Meier F; Vereecken H; Klumpp E
    Environ Pollut; 2018 Jul; 238():1027-1034. PubMed ID: 29449114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micro- and nanoplastics retention in porous media exhibits different dependence on grain surface roughness and clay coating with particle size.
    Liang Y; Luo Y; Shen C; Bradford SA
    Water Res; 2022 Aug; 221():118717. PubMed ID: 35749921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Observed Dependence of Colloid Detachment on the Concentration of Initially Attached Colloids and Collector Surface Heterogeneity in Porous Media.
    Li T; Jin Y; Huang Y; Li B; Shen C
    Environ Sci Technol; 2017 Mar; 51(5):2811-2820. PubMed ID: 28190337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Key factors controlling the transport of silver nanoparticles in porous media.
    El Badawy AM; Hassan AA; Scheckel KG; Suidan MT; Tolaymat TM
    Environ Sci Technol; 2013 May; 47(9):4039-45. PubMed ID: 23521179
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organic matter induced mobilization of polymer-coated silver nanoparticles from water-saturated sand.
    Yang X; Yin Z; Chen F; Hu J; Yang Y
    Sci Total Environ; 2015 Oct; 529():182-90. PubMed ID: 26011614
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New insights into the enhanced transport of uncoated and polyvinylpyrrolidone-coated silver nanoparticles in saturated porous media by dissolved black carbons.
    Wang K; Zhang Y; Sun B; Yang Y; Xiao B; Zhu L
    Chemosphere; 2021 Nov; 283():131159. PubMed ID: 34144287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental and Numerical Investigations of Silver Nanoparticle Transport under Variable Flow and Ionic Strength in Soil.
    Makselon J; Zhou D; Engelhardt I; Jacques D; Klumpp E
    Environ Sci Technol; 2017 Feb; 51(4):2096-2104. PubMed ID: 28177254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physicochemical factors controlling the retention and transport of perfluorooctanoic acid (PFOA) in saturated sand and limestone porous media.
    Lv X; Sun Y; Ji R; Gao B; Wu J; Lu Q; Jiang H
    Water Res; 2018 Sep; 141():251-258. PubMed ID: 29800833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of graphene oxide aggregation, retention, and release in quartz sand.
    Liang Y; Bradford SA; Šimůnek J; Klumpp E
    Sci Total Environ; 2019 Mar; 656():70-79. PubMed ID: 30502736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size.
    Kamrani S; Rezaei M; Kord M; Baalousha M
    Water Res; 2018 Apr; 133():338-347. PubMed ID: 28864305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media.
    Shen C; Wang H; Lazouskaya V; Du Y; Lu W; Wu J; Zhang H; Huang Y
    J Contam Hydrol; 2015; 177-178():18-29. PubMed ID: 25805364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transport and deposition of Suwannee River Humic Acid/Natural Organic Matter formed silver nanoparticles on silica matrices: the influence of solution pH and ionic strength.
    Akaighe N; Depner SW; Banerjee S; Sohn M
    Chemosphere; 2013 Jul; 92(4):406-12. PubMed ID: 23422173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aquasols: on the role of secondary minima.
    Hahn MW; Abadzic D; O'Melia CR
    Environ Sci Technol; 2004 Nov; 38(22):5915-24. PubMed ID: 15573589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.
    Wang D; Jin Y; Jaisi DP
    J Contam Hydrol; 2015 Nov; 182():194-209. PubMed ID: 26409895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.