These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. [Fully Automatic Glioma Segmentation Algorithm of Magnetic Resonance Imaging Based on 3D-UNet With More Global Contextual Feature Extraction: An Improvement on Insufficient Extraction of Global Features]. Tian H; Wang Y; Ji Y; Rahman MM Sichuan Da Xue Xue Bao Yi Xue Ban; 2024 Mar; 55(2):447-454. PubMed ID: 38645864 [TBL] [Abstract][Full Text] [Related]
3. Automatic post-stroke lesion segmentation on MR images using 3D residual convolutional neural network. Tomita N; Jiang S; Maeder ME; Hassanpour S Neuroimage Clin; 2020; 27():102276. PubMed ID: 32512401 [TBL] [Abstract][Full Text] [Related]
4. A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis. Salem M; Valverde S; Cabezas M; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X Neuroimage Clin; 2020; 25():102149. PubMed ID: 31918065 [TBL] [Abstract][Full Text] [Related]
5. Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning. Narayana PA; Coronado I; Sujit SJ; Sun X; Wolinsky JS; Gabr RE Magn Reson Imaging; 2020 Jan; 65():8-14. PubMed ID: 31670238 [TBL] [Abstract][Full Text] [Related]
6. An appraisal of the performance of AI tools for chronic stroke lesion segmentation. Ahmed R; Al Shehhi A; Hassan B; Werghi N; Seghier ML Comput Biol Med; 2023 Sep; 164():107302. PubMed ID: 37572443 [TBL] [Abstract][Full Text] [Related]
7. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. Valverde S; Cabezas M; Roura E; González-Villà S; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Oliver A; Lladó X Neuroimage; 2017 Jul; 155():159-168. PubMed ID: 28435096 [TBL] [Abstract][Full Text] [Related]
8. Automatic segmentation of prostate cancer metastases in PSMA PET/CT images using deep neural networks with weighted batch-wise dice loss. Xu Y; Klyuzhin I; Harsini S; Ortiz A; Zhang S; Bénard F; Dodhia R; Uribe CF; Rahmim A; Lavista Ferres J Comput Biol Med; 2023 May; 158():106882. PubMed ID: 37037147 [TBL] [Abstract][Full Text] [Related]
9. D-UNet: A Dimension-Fusion U Shape Network for Chronic Stroke Lesion Segmentation. Zhou Y; Huang W; Dong P; Xia Y; Wang S IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(3):940-950. PubMed ID: 31502985 [TBL] [Abstract][Full Text] [Related]
10. Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach. Lavdas I; Glocker B; Kamnitsas K; Rueckert D; Mair H; Sandhu A; Taylor SA; Aboagye EO; Rockall AG Med Phys; 2017 Oct; 44(10):5210-5220. PubMed ID: 28756622 [TBL] [Abstract][Full Text] [Related]
11. Identification and Diagnosis of Cerebral Stroke through Deep Convolutional Neural Network-Based Multimodal MRI Images. Pan Y; Zhang H; Yang J; Guo J; Yang Z; Wang J; Song G Contrast Media Mol Imaging; 2021; 2021():7598613. PubMed ID: 34381322 [TBL] [Abstract][Full Text] [Related]
12. CNN-Res: deep learning framework for segmentation of acute ischemic stroke lesions on multimodal MRI images. Gheibi Y; Shirini K; Razavi SN; Farhoudi M; Samad-Soltani T BMC Med Inform Decis Mak; 2023 Sep; 23(1):192. PubMed ID: 37752508 [TBL] [Abstract][Full Text] [Related]