These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

536 related articles for article (PubMed ID: 31865035)

  • 41. Leaching valuable metals from spent lithium-ion batteries using the reducing agent methanol.
    Kong L; Wang Z; Shi Z; Hu X; Liu A; Tao W; Wang B; Wang Q
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4258-4268. PubMed ID: 35969348
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching.
    Zhang Y; Wang W; Fang Q; Xu S
    Waste Manag; 2020 Feb; 102():847-855. PubMed ID: 31835062
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Closed-loop recycling of spent lithium-ion batteries based on selective sulfidation: An unconventional approach.
    Gu K; Gao X; Chen Y; Qin W; Han J
    Waste Manag; 2023 Sep; 169():32-42. PubMed ID: 37393754
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrochemical Properties of the LiNi
    Fu J; Mu D; Wu B; Bi J; Cui H; Yang H; Wu H; Wu F
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19704-19711. PubMed ID: 29790731
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries.
    Lie J; Tanda S; Liu JC
    Molecules; 2020 May; 25(9):. PubMed ID: 32384592
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ammoniacal leaching process for the selective recovery of value metals from waste lithium-ion batteries.
    Liu X; Huang K; Xiong H; Dong H
    Environ Technol; 2023 Jan; 44(2):211-225. PubMed ID: 34383608
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching.
    Ku H; Jung Y; Jo M; Park S; Kim S; Yang D; Rhee K; An EM; Sohn J; Kwon K
    J Hazard Mater; 2016 Aug; 313():138-46. PubMed ID: 27060219
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning.
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2015 Dec; 46():523-8. PubMed ID: 26323202
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recover value metals from spent lithium-ion batteries via a combination of in-situ reduction pretreatment and facile acid leaching.
    Zhang Y; Yu M; Guo J; Liu S; Song H; Wu W; Zheng C; Gao X
    Waste Manag; 2023 Apr; 161():193-202. PubMed ID: 36893713
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrometallurgical recovery of spent cobalt-based lithium-ion battery cathodes using ethanol as the reducing agent.
    Zhao J; Zhang B; Xie H; Qu J; Qu X; Xing P; Yin H
    Environ Res; 2020 Feb; 181():108803. PubMed ID: 31761334
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recycling of LiFePO
    Chen X; Li S; Wang Y; Jiang Y; Tan X; Han W; Wang S
    Waste Manag; 2021 Dec; 136():67-75. PubMed ID: 34637980
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.
    Chen X; Zhou T
    Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recycling valuable metals from spent lithium-ion batteries by ammonium sulfite-reduction ammonia leaching.
    Wu C; Li B; Yuan C; Ni S; Li L
    Waste Manag; 2019 Jun; 93():153-161. PubMed ID: 31235052
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Repurposing of Fruit Peel Waste as a Green Reductant for Recycling of Spent Lithium-Ion Batteries.
    Wu Z; Soh T; Chan JJ; Meng S; Meyer D; Srinivasan M; Tay CY
    Environ Sci Technol; 2020 Aug; 54(15):9681-9692. PubMed ID: 32644805
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries.
    Chen X; Guo C; Ma H; Li J; Zhou T; Cao L; Kang D
    Waste Manag; 2018 May; 75():459-468. PubMed ID: 29366798
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Closed-loop selective recycling process of spent LiNi
    Lin J; Cui C; Zhang X; Fan E; Chen R; Wu F; Li L
    J Hazard Mater; 2022 Feb; 424(Pt D):127757. PubMed ID: 34799163
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Leaching of valuable metals from cathode active materials in spent lithium-ion batteries by levulinic acid and biological approaches.
    Jiang T; Shi Q; Wei Z; Shah K; Efstathiadis H; Meng X; Liang Y
    Heliyon; 2023 May; 9(5):e15788. PubMed ID: 37180931
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid.
    Chen X; Ma H; Luo C; Zhou T
    J Hazard Mater; 2017 Mar; 326():77-86. PubMed ID: 27987453
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A lattice defect-inspired leaching strategy toward simultaneous recovery and separation of value metals from spent cathode materials.
    Tao H; Yang Y; Xu S; Liu Q; Huang G; Xu Z
    Waste Manag; 2021 Nov; 135():40-46. PubMed ID: 34469829
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Novel electrochemically driven and internal circulation process for valuable metals recycling from spent lithium-ion batteries.
    Li S; Wu X; Jiang Y; Zhou T; Zhao Y; Chen X
    Waste Manag; 2021 Dec; 136():18-27. PubMed ID: 34634567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.