These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 31865037)
21. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review. Wang R; Xu Z Waste Manag; 2014 Aug; 34(8):1455-69. PubMed ID: 24726822 [TBL] [Abstract][Full Text] [Related]
22. Improved borate fusion technique for determination of rare earth elements in electronic waste components. Makombe M; van der Horst C; Somerset V Environ Technol; 2023 Mar; 44(8):1047-1060. PubMed ID: 34649466 [TBL] [Abstract][Full Text] [Related]
23. Process optimization for acidic leaching of rare earth elements (REE) from waste electrical and electronic equipment (WEEE). Yuksekdag A; Kose-Mutlu B; Zeytuncu-Gokoglu B; Kumral M; Wiesner MR; Koyuncu I Environ Sci Pollut Res Int; 2022 Jan; 29(5):7772-7781. PubMed ID: 34476712 [TBL] [Abstract][Full Text] [Related]
24. Status of electronic waste recycling techniques: a review. Abdelbasir SM; Hassan SSM; Kamel AH; El-Nasr RS Environ Sci Pollut Res Int; 2018 Jun; 25(17):16533-16547. PubMed ID: 29737485 [TBL] [Abstract][Full Text] [Related]
26. Process intensification for sustainable extraction of metals from e-waste: challenges and opportunities. Javed A; Singh J Environ Sci Pollut Res Int; 2024 Feb; 31(7):9886-9919. PubMed ID: 36995505 [TBL] [Abstract][Full Text] [Related]
27. From electronic consumer products to e-wastes: Global outlook, waste quantities, recycling challenges. Tansel B Environ Int; 2017 Jan; 98():35-45. PubMed ID: 27726897 [TBL] [Abstract][Full Text] [Related]
28. Stocks, Flows, and Distribution of Critical Metals in Embedded Electronics in Passenger Vehicles. Restrepo E; Løvik AN; Wäger P; Widmer R; Lonka R; Müller DB Environ Sci Technol; 2017 Feb; 51(3):1129-1139. PubMed ID: 28099815 [TBL] [Abstract][Full Text] [Related]
29. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging. Palmieri R; Bonifazi G; Serranti S Waste Manag; 2014 Nov; 34(11):2120-30. PubMed ID: 24997795 [TBL] [Abstract][Full Text] [Related]
30. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities. Gutiérrez-Gutiérrez SC; Coulon F; Jiang Y; Wagland S Waste Manag; 2015 Aug; 42():128-36. PubMed ID: 25957938 [TBL] [Abstract][Full Text] [Related]
31. A review on recent advancements in recovery of valuable and toxic metals from e-waste using bioleaching approach. Yaashikaa PR; Priyanka B; Senthil Kumar P; Karishma S; Jeevanantham S; Indraganti S Chemosphere; 2022 Jan; 287(Pt 2):132230. PubMed ID: 34826922 [TBL] [Abstract][Full Text] [Related]
32. A new approach to designing easily recyclable printed circuit boards. Khrustalev D; Tirzhanov A; Khrustaleva A; Mustafin M; Yedrissov A Sci Rep; 2022 Dec; 12(1):22199. PubMed ID: 36564465 [TBL] [Abstract][Full Text] [Related]
33. Characterization of end-of-life LEDs: Mapping critical, valuable and hazardous elements in different devices. Vinhal JT; de Oliveira RP; Coleti JL; Espinosa DCR Waste Manag; 2022 Sep; 151():113-122. PubMed ID: 35939950 [TBL] [Abstract][Full Text] [Related]
34. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants--A review. Akcil A; Erust C; Gahan CS; Ozgun M; Sahin M; Tuncuk A Waste Manag; 2015 Nov; 45():258-71. PubMed ID: 25704926 [TBL] [Abstract][Full Text] [Related]
35. Challenges for critical raw material recovery from WEEE - The case study of gallium. Ueberschaar M; Otto SJ; Rotter VS Waste Manag; 2017 Feb; 60():534-545. PubMed ID: 28089397 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of the recycling potential of obsolete mobile phones through secondary material resources identification: A comprehensive characterization study. Kumari R; Samadder SR J Environ Manage; 2023 Nov; 345():118550. PubMed ID: 37451028 [TBL] [Abstract][Full Text] [Related]
37. Recoveries of rare elements Ga, Ge, In and Sn from waste electric and electronic equipment through secondary copper smelting. Avarmaa K; Yliaho S; Taskinen P Waste Manag; 2018 Jan; 71():400-410. PubMed ID: 29032002 [TBL] [Abstract][Full Text] [Related]
38. A Cleaner Process for Selective Recovery of Valuable Metals from Electronic Waste of Complex Mixtures of End-of-Life Electronic Products. Sun Z; Xiao Y; Sietsma J; Agterhuis H; Yang Y Environ Sci Technol; 2015 Jul; 49(13):7981-8. PubMed ID: 26061274 [TBL] [Abstract][Full Text] [Related]
39. Economic evaluation of an electrochemical process for the recovery of metals from electronic waste. Diaz LA; Lister TE Waste Manag; 2018 Apr; 74():384-392. PubMed ID: 29229181 [TBL] [Abstract][Full Text] [Related]
40. Uncovering the Recycling Potential of "New" WEEE in China. Zeng X; Gong R; Chen WQ; Li J Environ Sci Technol; 2016 Feb; 50(3):1347-58. PubMed ID: 26709550 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]