These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31865086)

  • 1. Evaluation of dissolution flux of iodine from brackish lake sediments under different temperature and oxygenic conditions.
    Satoh Y; Imai S
    Sci Total Environ; 2020 Mar; 707():135920. PubMed ID: 31865086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of radioiodine (
    Satoh Y; Imai S
    J Environ Radioact; 2021 Jul; 233():106608. PubMed ID: 33812179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flux and pathway of iodine dissolution from brackish lake sediment in the northeast of Japan.
    Satoh Y; Imai S
    Sci Total Environ; 2021 Oct; 789():147942. PubMed ID: 34052483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Features and influencing factors of nitrogen and phosphorus diffusive fluxes at the sediment-water interface of Erhai Lake.
    Zhao H; Zhang L; Wang S; Jiao L
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1933-1942. PubMed ID: 29103124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of light on sediment nutrient flux and water column nutrient stoichiometry in a shallow lake.
    Spears BM; Carvalho L; Perkins R; Paterson DM
    Water Res; 2008 Feb; 42(4-5):977-86. PubMed ID: 17923145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benthic flux of dissolved organic matter from lake sediment at different redox conditions and the possible effects of biogeochemical processes.
    Yang L; Choi JH; Hur J
    Water Res; 2014 Sep; 61():97-107. PubMed ID: 24907478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus flux from bottom sediments in Lake Eucha, Oklahoma.
    Haggard BE; Moore PA; Delaune PB
    J Environ Qual; 2005; 34(2):724-8. PubMed ID: 15758125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Characteristics of N
    Zheng XL; Wen SL; Li X; Gong WQ; Liu DH; Zhong JC
    Huan Jing Ke Xue; 2018 May; 39(5):2306-2315. PubMed ID: 29965532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inventories of 239+240Pu, 137Cs, and excess 210Pb in sediments from freshwater and brackish lakes in Rokkasho, Japan, adjacent to a spent nuclear fuel reprocessing plant.
    Ueda S; Ohtsuka Y; Kondo K; Hisamatsu S
    J Environ Radioact; 2009 Oct; 100(10):835-40. PubMed ID: 19586693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site.
    Xu C; Kaplan DI; Zhang S; Athon M; Ho YF; Li HP; Yeager CM; Schwehr KA; Grandbois R; Wellman D; Santschi PH
    J Environ Radioact; 2015 Jan; 139():43-55. PubMed ID: 25464040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating Pu and U isotopic compositions in sediments: a case study in Lake Obuchi, Rokkasho Village, Japan using sector-field ICP-MS and ICP-QMS.
    Zheng J; Yamada M
    J Environ Monit; 2005 Aug; 7(8):792-7. PubMed ID: 16049580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentration of 129I in aquatic biota collected from a lake adjacent to the spent nuclear fuel reprocessing plant in Rokkasho, Japan.
    Ueda S; Kakiuchi H; Hasegawa H; Kawamura H; Hisamatsu S
    Radiat Prot Dosimetry; 2015 Nov; 167(1-3):176-80. PubMed ID: 25935011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Distribution of nitrogen and phosphorus in the sediments and estimation of the nutrients fluxes in Longjinghu Lake, Chongqing City, during the initial impoundment period].
    Pan YA; Lei P; Zhang H; Shan BQ; Li J
    Huan Jing Ke Xue; 2014 May; 35(5):1727-34. PubMed ID: 25055659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ reductive dissolution to remove Iodine-129 from aquifer sediments.
    Szecsody JE; Emerson HP; Pearce CI; Gartman BN; Resch CT; Di Pietro SA
    J Environ Radioact; 2020 May; 216():106182. PubMed ID: 32063556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the role of bed sediments in the persistence of red mud pollution in a shallow lake (Kinghorn Loch, UK).
    Olszewska JP; Heal KV; Winfield IJ; Eades LJ; Spears BM
    Water Res; 2017 Oct; 123():569-577. PubMed ID: 28704772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TRITIUM AND IODINE-129 IN WATER SAMPLES COLLECTED ADJACENT TO A SPENT NUCLEAR FUEL REPROCESSING PLANT IN ROKKASHO, JAPAN.
    Ueda S; Hasegawa H; Kakiuchi H
    Radiat Prot Dosimetry; 2022 Sep; 198(13-15):957-963. PubMed ID: 36083753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of Zirconium-Modified Zeolite Addition on Migration and Transformation of Phosphorus in River Sediments Under Static and Hydrodynamic Disturbance Conditions].
    Yu Y; Lin JW; Zhan YH; He SQ; Wu XL; Wang Y; Zhao YY; Lin Y; Liu PX
    Huan Jing Ke Xue; 2019 Mar; 40(3):1337-1346. PubMed ID: 31087982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Simulation of Inorganic Nitrogen Fluxes at the Sediment-water Interface in a Typical Intertidal Zone, Eastern China].
    Nie JQ; Wang DQ; Chen J; Li YJ; Chen S; Chen ZL
    Huan Jing Ke Xue; 2018 Sep; 39(9):4199-4205. PubMed ID: 30188061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Warming increases nutrient mobilization and gaseous nitrogen removal from sediments across cascade reservoirs.
    Zhou X; Chen N; Yan Z; Duan S
    Environ Pollut; 2016 Dec; 219():490-500. PubMed ID: 27241745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Temporal and Spatial Variations in the Conductivity in Different Media in Taihu Lake, China].
    Wang R; Dai D; Zhang C; Deng YX; He CD; Yu T
    Huan Jing Ke Xue; 2019 Oct; 40(10):4469-4477. PubMed ID: 31854814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.