These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 31865258)

  • 21. Immobilization of Enzymes on Hetero-Functional Supports: Physical Adsorption Plus Additional Covalent Immobilization.
    Trobo-Maseda L; Orrego AH; Romero-Fernández M; Guisan JM; Rocha-Martín J
    Methods Mol Biol; 2020; 2100():159-174. PubMed ID: 31939122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coating Titania Nanoparticles with Epoxy-Containing Catechol Polymers via Cu(0)-Living Radical Polymerization as Intelligent Enzyme Carriers.
    Wang D; Ding W; Zhou K; Guo S; Zhang Q; Haddleton DM
    Biomacromolecules; 2018 Jul; 19(7):2979-2990. PubMed ID: 29738234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tyrosinase immobilization on aminated magnetic nanoparticles by physical adsorption combined with covalent crosslinking with improved catalytic activity, reusability and storage stability.
    Liu DM; Chen J; Shi YP
    Anal Chim Acta; 2018 May; 1006():90-98. PubMed ID: 30016268
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New opportunities for immobilization of enzymes.
    Guisan JM
    Methods Mol Biol; 2013; 1051():1-13. PubMed ID: 23934794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microtiter Plate Immobilization Screening for Prototyping Heterogeneous Enzyme Cascades.
    López IL; Sánchez-Costa M; Orrego AH; Zeballos N; Roura Padrosa D; López-Gallego F
    Angew Chem Int Ed Engl; 2024 Aug; 63(35):e202407411. PubMed ID: 39037386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties.
    Barbosa O; Torres R; Ortiz C; Berenguer-Murcia A; Rodrigues RC; Fernandez-Lafuente R
    Biomacromolecules; 2013 Aug; 14(8):2433-62. PubMed ID: 23822160
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-Molecule Encapsulation: A Straightforward Route to Highly Stable and Printable Enzymes.
    Beloqui A; Baur S; Trouillet V; Welle A; Madsen J; Bastmeyer M; Delaittre G
    Small; 2016 Apr; 12(13):1716-22. PubMed ID: 26849308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D Printing: An Emerging Technology for Biocatalyst Immobilization.
    Pose-Boirazian T; Martínez-Costas J; Eibes G
    Macromol Biosci; 2022 Sep; 22(9):e2200110. PubMed ID: 35579179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanosilicalites as Support for β-Glucosidases Covalent Immobilization.
    Carvalho Y; Almeida JMAR; Romano PN; Farrance K; Demma Carà P; Pereira N; Lopez-Sanchez JA; Sousa-Aguiar EF
    Appl Biochem Biotechnol; 2017 Aug; 182(4):1619-1629. PubMed ID: 28155169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct bioelectrocatalysis by redox enzymes immobilized in electrostatically condensed oppositely charged polyelectrolyte electrode coatings.
    Lim K; Sima M; Stewart RJ; Minteer SD
    Analyst; 2020 Feb; 145(4):1250-1257. PubMed ID: 31854387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-Point Covalent Immobilization of Enzymes on Supports Activated with Epoxy Groups: Stabilization of Industrial Enzymes.
    Mateo C; Abian O; Fernandez-Lorente G; Pessela BCC; Grazu V; Guisan JM; Fernandez-Lafuente R
    Methods Mol Biol; 2020; 2100():109-117. PubMed ID: 31939118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.
    Hoarau M; Badieyan S; Marsh ENG
    Org Biomol Chem; 2017 Nov; 15(45):9539-9551. PubMed ID: 28932860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards Greener and More Cost-efficient Biosynthesis of Pharmaceuticals and Fragrance Molecules.
    Benítez Mateos AI
    Chimia (Aarau); 2024 Apr; 78(4):222-225. PubMed ID: 38676613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immobilized biocatalytic process development and potential application in membrane separation: a review.
    Chakraborty S; Rusli H; Nath A; Sikder J; Bhattacharjee C; Curcio S; Drioli E
    Crit Rev Biotechnol; 2016; 36(1):43-58. PubMed ID: 25025272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymatic epoxidation of cyclohexene by peroxidase immobilization on a textile and an adapted reactor design.
    Wunschik DS; Ingenbosch KN; Süss P; Liebelt U; Quint S; Dyllick-Brenzinger M; Zuhse R; Menyes U; Hoffmann-Jacobsen K; Opwis K; Gutmann JS
    Enzyme Microb Technol; 2020 May; 136():109512. PubMed ID: 32331717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzyme immobilisation in biocatalysis: why, what and how.
    Sheldon RA; van Pelt S
    Chem Soc Rev; 2013 Aug; 42(15):6223-35. PubMed ID: 23532151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flow-through immobilized enzyme reactors based on monoliths: I. Preparation of heterogeneous biocatalysts.
    Vlakh EG; Tennikova TB
    J Sep Sci; 2013 Jan; 36(1):110-27. PubMed ID: 23292849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein-based scaffolds for enzyme immobilization.
    Zhang G; Schmidt-Dannert S; Quin MB; Schmidt-Dannert C
    Methods Enzymol; 2019; 617():323-362. PubMed ID: 30784408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flow Bioreactors as Complementary Tools for Biocatalytic Process Intensification.
    Tamborini L; Fernandes P; Paradisi F; Molinari F
    Trends Biotechnol; 2018 Jan; 36(1):73-88. PubMed ID: 29054312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorographene and Graphane as an Excellent Platform for Enzyme Biocatalysis.
    Hermanová S; Bouša D; Mazánek V; Sedmidubský D; Plutnar J; Pumera M; Sofer Z
    Chemistry; 2018 Nov; 24(63):16833-16839. PubMed ID: 30117202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.