These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 31865885)

  • 41. HRLSim: a high performance spiking neural network simulator for GPGPU clusters.
    Minkovich K; Thibeault CM; O'Brien MJ; Nogin A; Cho Y; Srinivasa N
    IEEE Trans Neural Netw Learn Syst; 2014 Feb; 25(2):316-31. PubMed ID: 24807031
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Power-efficient simulation of detailed cortical microcircuits on SpiNNaker.
    Sharp T; Galluppi F; Rast A; Furber S
    J Neurosci Methods; 2012 Sep; 210(1):110-8. PubMed ID: 22465805
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SNAVA-A real-time multi-FPGA multi-model spiking neural network simulation architecture.
    Sripad A; Sanchez G; Zapata M; Pirrone V; Dorta T; Cambria S; Marti A; Krishnamourthy K; Madrenas J
    Neural Netw; 2018 Jan; 97():28-45. PubMed ID: 29054036
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient SNN multi-cores MAC array acceleration on SpiNNaker 2.
    Huang J; Kelber F; Vogginger B; Liu C; Kreutz F; Gerhards P; Scholz D; Knobloch K; Mayr CG
    Front Neurosci; 2023; 17():1223262. PubMed ID: 37609449
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An unsupervised neuromorphic clustering algorithm.
    Diamond A; Schmuker M; Nowotny T
    Biol Cybern; 2019 Aug; 113(4):423-437. PubMed ID: 30944983
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simulating the Cortical Microcircuit Significantly Faster Than Real Time on the IBM INC-3000 Neural Supercomputer.
    Heittmann A; Psychou G; Trensch G; Cox CE; Wilcke WW; Diesmann M; Noll TG
    Front Neurosci; 2021; 15():728460. PubMed ID: 35126034
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Large-Scale Simulation of a Layered Cortical Sheet of Spiking Network Model Using a Tile Partitioning Method.
    Igarashi J; Yamaura H; Yamazaki T
    Front Neuroinform; 2019; 13():71. PubMed ID: 31849631
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Scalable Digital Neuromorphic Architecture for Large-Scale Biophysically Meaningful Neural Network With Multi-Compartment Neurons.
    Yang S; Deng B; Wang J; Li H; Lu M; Che Y; Wei X; Loparo KA
    IEEE Trans Neural Netw Learn Syst; 2020 Jan; 31(1):148-162. PubMed ID: 30892250
    [TBL] [Abstract][Full Text] [Related]  

  • 49. From model specification to simulation of biologically constrained networks of spiking neurons.
    Richmond P; Cope A; Gurney K; Allerton DJ
    Neuroinformatics; 2014 Apr; 12(2):307-23. PubMed ID: 24253973
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simulation of networks of spiking neurons: a review of tools and strategies.
    Brette R; Rudolph M; Carnevale T; Hines M; Beeman D; Bower JM; Diesmann M; Morrison A; Goodman PH; Harris FC; Zirpe M; Natschläger T; Pecevski D; Ermentrout B; Djurfeldt M; Lansner A; Rochel O; Vieville T; Muller E; Davison AP; El Boustani S; Destexhe A
    J Comput Neurosci; 2007 Dec; 23(3):349-98. PubMed ID: 17629781
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.
    Beyeler M; Dutt ND; Krichmar JL
    Neural Netw; 2013 Dec; 48():109-24. PubMed ID: 23994510
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spiking neural networks for cortical neuronal spike train decoding.
    Fang H; Wang Y; He J
    Neural Comput; 2010 Apr; 22(4):1060-85. PubMed ID: 19922291
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Parallel Distribution of an Inner Hair Cell and Auditory Nerve Model for Real-Time Application.
    James R; Garside J; Plana LA; Rowley A; Furber SB
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1018-1026. PubMed ID: 30010597
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Benchmarking Neuromorphic Hardware and Its Energy Expenditure.
    Ostrau C; Klarhorst C; Thies M; Rückert U
    Front Neurosci; 2022; 16():873935. PubMed ID: 35720731
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A framework for plasticity implementation on the SpiNNaker neural architecture.
    Galluppi F; Lagorce X; Stromatias E; Pfeiffer M; Plana LA; Furber SB; Benosman RB
    Front Neurosci; 2014; 8():429. PubMed ID: 25653580
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems.
    Broccard FD; Joshi S; Wang J; Cauwenberghs G
    J Neural Eng; 2017 Aug; 14(4):041002. PubMed ID: 28573983
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
    Walter F; Röhrbein F; Knoll A
    Neural Netw; 2015 Dec; 72():152-67. PubMed ID: 26422422
    [TBL] [Abstract][Full Text] [Related]  

  • 58. VLSI implementation of a bio-inspired olfactory spiking neural network.
    Hsieh HY; Tang KT
    IEEE Trans Neural Netw Learn Syst; 2012 Jul; 23(7):1065-73. PubMed ID: 24807133
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Real-time hardware emulation of neural cultures: A comparative study of in vitro, in silico and in duris silico models.
    Vallejo-Mancero B; Faci-Lázaro S; Zapata M; Soriano J; Madrenas J
    Neural Netw; 2024 Nov; 179():106593. PubMed ID: 39142177
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Streaming parallel GPU acceleration of large-scale filter-based spiking neural networks.
    Slażyński L; Bohte S
    Network; 2012; 23(4):183-211. PubMed ID: 23098420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.