These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
432 related articles for article (PubMed ID: 31865900)
21. Research on Chinese medical named entity recognition based on collaborative cooperation of multiple neural network models. Ji B; Li S; Yu J; Ma J; Tang J; Wu Q; Tan Y; Liu H; Ji Y J Biomed Inform; 2020 Apr; 104():103395. PubMed ID: 32109551 [TBL] [Abstract][Full Text] [Related]
22. Named Entity Recognition in Chinese Clinical Text Using Deep Neural Network. Wu Y; Jiang M; Lei J; Xu H Stud Health Technol Inform; 2015; 216():624-8. PubMed ID: 26262126 [TBL] [Abstract][Full Text] [Related]
23. Extracting entities with attributes in clinical text via joint deep learning. Shi X; Yi Y; Xiong Y; Tang B; Chen Q; Wang X; Ji Z; Zhang Y; Xu H J Am Med Inform Assoc; 2019 Dec; 26(12):1584-1591. PubMed ID: 31550346 [TBL] [Abstract][Full Text] [Related]
24. De-identification of Clinical Text via Bi-LSTM-CRF with Neural Language Models. Tang B; Jiang D; Chen Q; Wang X; Yan J; Shen Y AMIA Annu Symp Proc; 2019; 2019():857-863. PubMed ID: 32308882 [TBL] [Abstract][Full Text] [Related]
25. Clinical Named Entity Recognition Using Deep Learning Models. Wu Y; Jiang M; Xu J; Zhi D; Xu H AMIA Annu Symp Proc; 2017; 2017():1812-1819. PubMed ID: 29854252 [TBL] [Abstract][Full Text] [Related]
26. De-identifying Spanish medical texts - named entity recognition applied to radiology reports. Pérez-Díez I; Pérez-Moraga R; López-Cerdán A; Salinas-Serrano JM; la Iglesia-Vayá M J Biomed Semantics; 2021 Mar; 12(1):6. PubMed ID: 33781334 [TBL] [Abstract][Full Text] [Related]
27. Language model based on deep learning network for biomedical named entity recognition. Hou G; Jian Y; Zhao Q; Quan X; Zhang H Methods; 2024 Jun; 226():71-77. PubMed ID: 38641084 [TBL] [Abstract][Full Text] [Related]
28. Extracting comprehensive clinical information for breast cancer using deep learning methods. Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032 [TBL] [Abstract][Full Text] [Related]
29. A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance. Lu H; Ehwerhemuepha L; Rakovski C BMC Med Res Methodol; 2022 Jul; 22(1):181. PubMed ID: 35780100 [TBL] [Abstract][Full Text] [Related]
30. A deep learning model incorporating part of speech and self-matching attention for named entity recognition of Chinese electronic medical records. Cai X; Dong S; Hu J BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):65. PubMed ID: 30961622 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of clinical named entity recognition methods for Serbian electronic health records. Kaplar A; Stošović M; Kaplar A; Brković V; Naumović R; Kovačević A Int J Med Inform; 2022 Aug; 164():104805. PubMed ID: 35653828 [TBL] [Abstract][Full Text] [Related]
32. Deep learning in clinical natural language processing: a methodical review. Wu S; Roberts K; Datta S; Du J; Ji Z; Si Y; Soni S; Wang Q; Wei Q; Xiang Y; Zhao B; Xu H J Am Med Inform Assoc; 2020 Mar; 27(3):457-470. PubMed ID: 31794016 [TBL] [Abstract][Full Text] [Related]
33. Clinical text classification with rule-based features and knowledge-guided convolutional neural networks. Yao L; Mao C; Luo Y BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 3):71. PubMed ID: 30943960 [TBL] [Abstract][Full Text] [Related]
34. Task definition, annotated dataset, and supervised natural language processing models for symptom extraction from unstructured clinical notes. Steinkamp JM; Bala W; Sharma A; Kantrowitz JJ J Biomed Inform; 2020 Feb; 102():103354. PubMed ID: 31838210 [TBL] [Abstract][Full Text] [Related]
35. Negation recognition in clinical natural language processing using a combination of the NegEx algorithm and a convolutional neural network. Argüello-González G; Aquino-Esperanza J; Salvador D; Bretón-Romero R; Del Río-Bermudez C; Tello J; Menke S BMC Med Inform Decis Mak; 2023 Oct; 23(1):216. PubMed ID: 37833661 [TBL] [Abstract][Full Text] [Related]
36. A Hybrid Model for Family History Information Identification and Relation Extraction: Development and Evaluation of an End-to-End Information Extraction System. Kim Y; Heider PM; Lally IR; Meystre SM JMIR Med Inform; 2021 Apr; 9(4):e22797. PubMed ID: 33885370 [TBL] [Abstract][Full Text] [Related]
37. Measuring the effect of different types of unsupervised word representations on Medical Named Entity Recognition. Casillas A; Ezeiza N; Goenaga I; Pérez A; Soto X Int J Med Inform; 2019 Sep; 129():100-106. PubMed ID: 31445243 [TBL] [Abstract][Full Text] [Related]
38. The Impact of Specialized Corpora for Word Embeddings in Natural Langage Understanding. Neuraz A; Rance B; Garcelon N; Llanos LC; Burgun A; Rosset S Stud Health Technol Inform; 2020 Jun; 270():432-436. PubMed ID: 32570421 [TBL] [Abstract][Full Text] [Related]
39. An imConvNet-based deep learning model for Chinese medical named entity recognition. Zheng Y; Han Z; Cai Y; Duan X; Sun J; Yang W; Huang H BMC Med Inform Decis Mak; 2022 Nov; 22(1):303. PubMed ID: 36411432 [TBL] [Abstract][Full Text] [Related]
40. A study of deep learning methods for de-identification of clinical notes in cross-institute settings. Yang X; Lyu T; Li Q; Lee CY; Bian J; Hogan WR; Wu Y BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):232. PubMed ID: 31801524 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]