These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 31865904)

  • 1. Machine learning-based identification and rule-based normalization of adverse drug reactions in drug labels.
    Tiftikci M; Özgür A; He Y; Hur J
    BMC Bioinformatics; 2019 Dec; 20(Suppl 21):707. PubMed ID: 31865904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adverse Drug Event Detection from Electronic Health Records Using Hierarchical Recurrent Neural Networks with Dual-Level Embedding.
    Wunnava S; Qin X; Kakar T; Sen C; Rundensteiner EA; Kong X
    Drug Saf; 2019 Jan; 42(1):113-122. PubMed ID: 30649736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Named entity recognition from Chinese adverse drug event reports with lexical feature based BiLSTM-CRF and tri-training.
    Chen Y; Zhou C; Li T; Wu H; Zhao X; Ye K; Liao J
    J Biomed Inform; 2019 Aug; 96():103252. PubMed ID: 31323311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mining FDA drug labels using an unsupervised learning technique--topic modeling.
    Bisgin H; Liu Z; Fang H; Xu X; Tong W
    BMC Bioinformatics; 2011 Oct; 12 Suppl 10(Suppl 10):S11. PubMed ID: 22166012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomedical named entity recognition using deep neural networks with contextual information.
    Cho H; Lee H
    BMC Bioinformatics; 2019 Dec; 20(1):735. PubMed ID: 31881938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dataset of 200 structured product labels annotated for adverse drug reactions.
    Demner-Fushman D; Shooshan SE; Rodriguez L; Aronson AR; Lang F; Rogers W; Roberts K; Tonning J
    Sci Data; 2018 Jan; 5():180001. PubMed ID: 29381145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking entities through an ontology using word embeddings and syntactic re-ranking.
    Karadeniz İ; Özgür A
    BMC Bioinformatics; 2019 Mar; 20(1):156. PubMed ID: 30917789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DTranNER: biomedical named entity recognition with deep learning-based label-label transition model.
    Hong SK; Lee JG
    BMC Bioinformatics; 2020 Feb; 21(1):53. PubMed ID: 32046638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontology-based literature mining and class effect analysis of adverse drug reactions associated with neuropathy-inducing drugs.
    Hur J; Özgür A; He Y
    J Biomed Semantics; 2018 Jun; 9(1):17. PubMed ID: 29880031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of serious adverse drug reactions using FDA-approved drug labeling and MedDRA.
    Wu L; Ingle T; Liu Z; Zhao-Wong A; Harris S; Thakkar S; Zhou G; Yang J; Xu J; Mehta D; Ge W; Tong W; Fang H
    BMC Bioinformatics; 2019 Mar; 20(Suppl 2):97. PubMed ID: 30871458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontological Organization and Bioinformatic Analysis of Adverse Drug Reactions From Package Inserts: Development and Usability Study.
    Li X; Lin X; Ren H; Guo J
    J Med Internet Res; 2020 Jul; 22(7):e20443. PubMed ID: 32706718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Natural Language Processing (NLP) systems to annotate drug product labeling with MedDRA terminology.
    Ly T; Pamer C; Dang O; Brajovic S; Haider S; Botsis T; Milward D; Winter A; Lu S; Ball R
    J Biomed Inform; 2018 Jul; 83():73-86. PubMed ID: 29860093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chinese-Named Entity Recognition From Adverse Drug Event Records: Radical Embedding-Combined Dynamic Embedding-Based BERT in a Bidirectional Long Short-term Conditional Random Field (Bi-LSTM-CRF) Model.
    Wu H; Ji J; Tian H; Chen Y; Ge W; Zhang H; Yu F; Zou J; Nakamura M; Liao J
    JMIR Med Inform; 2021 Dec; 9(12):e26407. PubMed ID: 34855616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An adverse drug effect mentions extraction method based on weighted online recurrent extreme learning machine.
    El-Allaly ED; Sarrouti M; En-Nahnahi N; Ouatik El Alaoui S
    Comput Methods Programs Biomed; 2019 Jul; 176():33-41. PubMed ID: 31200909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of deep learning approaches for medication and adverse drug event extraction from clinical text.
    Wei Q; Ji Z; Li Z; Du J; Wang J; Xu J; Xiang Y; Tiryaki F; Wu S; Zhang Y; Tao C; Xu H
    J Am Med Inform Assoc; 2020 Jan; 27(1):13-21. PubMed ID: 31135882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial feature embedding based on CNN and LSTM for biomedical named entity recognition.
    Cho M; Ha J; Park C; Park S
    J Biomed Inform; 2020 Mar; 103():103381. PubMed ID: 32004641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adverse Event extraction from Structured Product Labels using the Event-based Text-mining of Health Electronic Records (ETHER) system.
    Pandey A; Kreimeyer K; Foster M; Dang O; Ly T; Wang W; Forshee R; Botsis T
    Health Informatics J; 2019 Dec; 25(4):1232-1243. PubMed ID: 29359620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural Multi-Task Learning for Adverse Drug Reaction Extraction.
    Liu F; Zheng X; Yu H; Tjia J
    AMIA Annu Symp Proc; 2020; 2020():756-762. PubMed ID: 33936450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning approaches for extracting adverse events and indications of dietary supplements from clinical text.
    Fan Y; Zhou S; Li Y; Zhang R
    J Am Med Inform Assoc; 2021 Mar; 28(3):569-577. PubMed ID: 33150942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ontology-Based Healthcare Named Entity Recognition from Twitter Messages Using a Recurrent Neural Network Approach.
    Batbaatar E; Ryu KH
    Int J Environ Res Public Health; 2019 Sep; 16(19):. PubMed ID: 31569654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.