These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31865916)

  • 1. HPOAnnotator: improving large-scale prediction of HPO annotations by low-rank approximation with HPO semantic similarities and multiple PPI networks.
    Gao J; Liu L; Yao S; Huang X; Mamitsuka H; Zhu S
    BMC Med Genomics; 2019 Dec; 12(Suppl 10):187. PubMed ID: 31865916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HPOLabeler: improving prediction of human protein-phenotype associations by learning to rank.
    Liu L; Huang X; Mamitsuka H; Zhu S
    Bioinformatics; 2020 Aug; 36(14):4180-4188. PubMed ID: 32379868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of Human Protein Sequence and Protein-Protein Interaction Data by Graph Autoencoder to Identify Novel Protein-Abnormal Phenotype Associations.
    Liu Y; He R; Qu Y; Zhu Y; Li D; Ling X; Xia S; Li Z; Li D
    Cells; 2022 Aug; 11(16):. PubMed ID: 36010562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HPODNets: deep graph convolutional networks for predicting human protein-phenotype associations.
    Liu L; Mamitsuka H; Zhu S
    Bioinformatics; 2022 Jan; 38(3):799-808. PubMed ID: 34672333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
    Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H
    J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Human Phenotype Ontology terms by means of hierarchical ensemble methods.
    Notaro M; Schubach M; Robinson PN; Valentini G
    BMC Bioinformatics; 2017 Oct; 18(1):449. PubMed ID: 29025394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations on factors influencing HPO-based semantic similarity calculation.
    Peng J; Li Q; Shang X
    J Biomed Semantics; 2017 Sep; 8(Suppl 1):34. PubMed ID: 29297376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer learning across ontologies for phenome-genome association prediction.
    Petegrosso R; Park S; Hwang TH; Kuang R
    Bioinformatics; 2017 Feb; 33(4):529-536. PubMed ID: 27797759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Methods for Prediction of Human Protein-Phenotype Associations: A Review.
    Liu L; Zhu S
    Phenomics; 2021 Aug; 1(4):171-185. PubMed ID: 36939789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein functional properties prediction in sparsely-label PPI networks through regularized non-negative matrix factorization.
    Wu Q; Wang Z; Li C; Ye Y; Li Y; Sun N
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S9. PubMed ID: 25708164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Annotating Diseases Using Human Phenotype Ontology Improves Prediction of Disease-Associated Long Non-coding RNAs.
    Le DH; Dao LTM
    J Mol Biol; 2018 Jul; 430(15):2219-2230. PubMed ID: 29758261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HPOFiller: identifying missing protein-phenotype associations by graph convolutional network.
    Liu L; Mamitsuka H; Zhu S
    Bioinformatics; 2021 Oct; 37(19):3328-3336. PubMed ID: 33822886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical phenotype-based gene prioritization: an initial study using semantic similarity and the human phenotype ontology.
    Masino AJ; Dechene ET; Dulik MC; Wilkens A; Spinner NB; Krantz ID; Pennington JW; Robinson PN; White PS
    BMC Bioinformatics; 2014 Jul; 15(1):248. PubMed ID: 25047600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting disease-related phenotypes using an integrated phenotype similarity measurement based on HPO.
    Xue H; Peng J; Shang X
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):34. PubMed ID: 30953559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of anatomy ontology data with protein-protein interaction networks improves the candidate gene prediction accuracy for anatomical entities.
    Fernando PC; Mabee PM; Zeng E
    BMC Bioinformatics; 2020 Oct; 21(1):442. PubMed ID: 33028186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks.
    Peng J; Uygun S; Kim T; Wang Y; Rhee SY; Chen J
    BMC Bioinformatics; 2015 Feb; 16():44. PubMed ID: 25886899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The human phenotype ontology.
    Robinson PN; Mundlos S
    Clin Genet; 2010 Jun; 77(6):525-34. PubMed ID: 20412080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculating phenotypic similarity between genes using hierarchical structure data based on semantic similarity.
    Zhang S; Chang Z; Li Z; DuanMu H; Li Z; Li K; Liu Y; Qiu F; Xu Y
    Gene; 2012 Apr; 497(1):58-65. PubMed ID: 22305981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PHENOstruct: Prediction of human phenotype ontology terms using heterogeneous data sources.
    Kahanda I; Funk C; Verspoor K; Ben-Hur A
    F1000Res; 2015; 4():259. PubMed ID: 26834980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graph regularized L
    Gao Z; Wang YT; Wu QW; Ni JC; Zheng CH
    BMC Bioinformatics; 2020 Feb; 21(1):61. PubMed ID: 32070280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.