BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 31866184)

  • 1. Hardly Vacuous: The Parasitophorous Vacuolar Membrane of Malaria Parasites.
    Goldberg DE; Zimmerberg J
    Trends Parasitol; 2020 Feb; 36(2):138-146. PubMed ID: 31866184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4D analysis of malaria parasite invasion offers insights into erythrocyte membrane remodeling and parasitophorous vacuole formation.
    Geoghegan ND; Evelyn C; Whitehead LW; Pasternak M; McDonald P; Triglia T; Marapana DS; Kempe D; Thompson JK; Mlodzianoski MJ; Healer J; Biro M; Cowman AF; Rogers KL
    Nat Commun; 2021 Jun; 12(1):3620. PubMed ID: 34131147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the parasitophorous vacuole membrane from Plasmodium chabaudi and implications about its role in the export of parasite proteins.
    Lanners HN; Bafford RA; Wiser MF
    Parasitol Res; 1999 May; 85(5):349-55. PubMed ID: 10227053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular interactions of Plasmodium liver stage with its host mammalian cell.
    Bano N; Romano JD; Jayabalasingham B; Coppens I
    Int J Parasitol; 2007 Oct; 37(12):1329-41. PubMed ID: 17537443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The parasitophorous vacuole of the blood-stage malaria parasite.
    Matz JM; Beck JR; Blackman MJ
    Nat Rev Microbiol; 2020 Jul; 18(7):379-391. PubMed ID: 31980807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vesicle dynamics during the egress of malaria gametocytes from the red blood cell.
    Bennink S; Pradel G
    Mol Biochem Parasitol; 2021 May; 243():111372. PubMed ID: 33961918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular make-up of the Plasmodium parasitophorous vacuolar membrane.
    Spielmann T; Montagna GN; Hecht L; Matuschewski K
    Int J Med Microbiol; 2012 Oct; 302(4-5):179-86. PubMed ID: 22898489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Plasmodium rhoptry associated protein complex is important for parasitophorous vacuole membrane structure and intraerythrocytic parasite growth.
    Ghosh S; Kennedy K; Sanders P; Matthews K; Ralph SA; Counihan NA; de Koning-Ward TF
    Cell Microbiol; 2017 Aug; 19(8):. PubMed ID: 28205319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trafficking of PfExp1 to the parasitophorous vacuolar membrane of Plasmodium falciparum is independent of protein folding and the PTEX translocon.
    Tribensky A; Graf AW; Diehl M; Fleck W; Przyborski JM
    Cell Microbiol; 2017 May; 19(5):. PubMed ID: 27892646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport mechanisms in Plasmodium-infected erythrocytes: lipid rafts and a tubovesicular network.
    Haldar K; Samuel BU; Mohandas N; Harrison T; Hiller NL
    Int J Parasitol; 2001 Oct; 31(12):1393-401. PubMed ID: 11566306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PTEX component HSP101 mediates export of diverse malaria effectors into host erythrocytes.
    Beck JR; Muralidharan V; Oksman A; Goldberg DE
    Nature; 2014 Jul; 511(7511):592-5. PubMed ID: 25043010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogenesis of and activities at the Toxoplasma gondii parasitophorous vacuole membrane.
    Sinai AP
    Subcell Biochem; 2008; 47():155-64. PubMed ID: 18512349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rounding precedes rupture and breakdown of vacuolar membranes minutes before malaria parasite egress from erythrocytes.
    Glushakova S; Beck JR; Garten M; Busse BL; Nasamu AS; Tenkova-Heuser T; Heuser J; Goldberg DE; Zimmerberg J
    Cell Microbiol; 2018 Oct; 20(10):e12868. PubMed ID: 29900649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmodium berghei sporozoites in nonreplicative vacuole are eliminated by a PI3P-mediated autophagy-independent pathway.
    Bindschedler A; Wacker R; Egli J; Eickel N; Schmuckli-Maurer J; Franke-Fayard BM; Janse CJ; Heussler VT
    Cell Microbiol; 2021 Jan; 23(1):e13271. PubMed ID: 32979009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes.
    Yeoh S; O'Donnell RA; Koussis K; Dluzewski AR; Ansell KH; Osborne SA; Hackett F; Withers-Martinez C; Mitchell GH; Bannister LH; Bryans JS; Kettleborough CA; Blackman MJ
    Cell; 2007 Dec; 131(6):1072-83. PubMed ID: 18083098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms of host cell egress by malaria parasites.
    Wirth CC; Pradel G
    Int J Med Microbiol; 2012 Oct; 302(4-5):172-8. PubMed ID: 22951233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vesicle-mediated trafficking of parasite proteins to the host cell cytosol and erythrocyte surface membrane in Plasmodium falciparum infected erythrocytes.
    Taraschi TF; Trelka D; Martinez S; Schneider T; O'Donnell ME
    Int J Parasitol; 2001 Oct; 31(12):1381-91. PubMed ID: 11566305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Export of parasite proteins to the erythrocyte in Plasmodium falciparum-infected cells.
    Haldar K; Holder AA
    Semin Cell Biol; 1993 Oct; 4(5):345-53. PubMed ID: 8257786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Host cell remodeling by pathogens: the exomembrane system in Plasmodium-infected erythrocytes.
    Sherling ES; van Ooij C
    FEMS Microbiol Rev; 2016 Sep; 40(5):701-21. PubMed ID: 27587718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane trafficking and remodeling at the host-parasite interface.
    Santi-Rocca J; Blanchard N
    Curr Opin Microbiol; 2017 Dec; 40():145-151. PubMed ID: 29175340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.