These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31866366)

  • 1. Patterns of Genetic Variability in Genomic Regions with Low Rates of Recombination.
    Becher H; Jackson BC; Charlesworth B
    Curr Biol; 2020 Jan; 30(1):94-100.e3. PubMed ID: 31866366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition from Background Selection to Associative Overdominance Promotes Diversity in Regions of Low Recombination.
    Gilbert KJ; Pouyet F; Excoffier L; Peischl S
    Curr Biol; 2020 Jan; 30(1):101-107.e3. PubMed ID: 31866368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relation between recombination rate and patterns of molecular evolution and variation in Drosophila melanogaster.
    Campos JL; Halligan DL; Haddrill PR; Charlesworth B
    Mol Biol Evol; 2014 Apr; 31(4):1010-28. PubMed ID: 24489114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relations between recombination rate and patterns of molecular variation and evolution in Drosophila.
    Charlesworth B; Campos JL
    Annu Rev Genet; 2014; 48():383-403. PubMed ID: 25251853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effects on Neutral Variability of Recurrent Selective Sweeps and Background Selection.
    Campos JL; Charlesworth B
    Genetics; 2019 May; 212(1):287-303. PubMed ID: 30923166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High nucleotide sequence variation in a region of low recombination in Drosophila simulans is consistent with the background selection model.
    Hamblin MT; Aquadro CF
    Mol Biol Evol; 1996 Oct; 13(8):1133-40. PubMed ID: 8865667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regions of lower crossing over harbor more rare variants in African populations of Drosophila melanogaster.
    Andolfatto P; Przeworski M
    Genetics; 2001 Jun; 158(2):657-65. PubMed ID: 11404330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reanalysis of protein polymorphism in Drosophila melanogaster, D. simulans, D. sechellia and D. mauritiana: effects of population size and selection.
    Morton RA; Choudhary M; Cariou ML; Singh RS
    Genetica; 2004 Mar; 120(1-3):101-14. PubMed ID: 15088651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How can the low levels of DNA sequence variation in regions of the drosophila genome with low recombination rates be explained?
    Hudson RR
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):6815-8. PubMed ID: 8041702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Background selection as baseline for nucleotide variation across the Drosophila genome.
    Comeron JM
    PLoS Genet; 2014 Jun; 10(6):e1004434. PubMed ID: 24968283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of deleterious mutations on neutral molecular variation.
    Charlesworth B; Morgan MT; Charlesworth D
    Genetics; 1993 Aug; 134(4):1289-303. PubMed ID: 8375663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Background selection as null hypothesis in population genomics: insights and challenges from
    Comeron JM
    Philos Trans R Soc Lond B Biol Sci; 2017 Dec; 372(1736):. PubMed ID: 29109230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA sequence polymorphism and divergence at the erect wing and suppressor of sable loci of Drosophila melanogaster and D. simulans.
    Braverman JM; Lazzaro BP; Aguadé M; Langley CH
    Genetics; 2005 Jul; 170(3):1153-65. PubMed ID: 15944367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hitchhiking effect on the site frequency spectrum of DNA polymorphisms.
    Braverman JM; Hudson RR; Kaplan NL; Langley CH; Stephan W
    Genetics; 1995 Jun; 140(2):783-96. PubMed ID: 7498754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome.
    Lohmueller KE; Albrechtsen A; Li Y; Kim SY; Korneliussen T; Vinckenbosch N; Tian G; Huerta-Sanchez E; Feder AF; Grarup N; Jørgensen T; Jiang T; Witte DR; Sandbæk A; Hellmann I; Lauritzen T; Hansen T; Pedersen O; Wang J; Nielsen R
    PLoS Genet; 2011 Oct; 7(10):e1002326. PubMed ID: 22022285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population, evolutionary and genomic consequences of interference selection.
    Comeron JM; Kreitman M
    Genetics; 2002 May; 161(1):389-410. PubMed ID: 12019253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Selection at Linked Sites on Patterns of Genetic Variability.
    Charlesworth B; Jensen JD
    Annu Rev Ecol Evol Syst; 2021 Nov; 52():177-197. PubMed ID: 37089401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Searching for evidence of positive selection in the human genome using patterns of microsatellite variability.
    Payseur BA; Cutter AD; Nachman MW
    Mol Biol Evol; 2002 Jul; 19(7):1143-53. PubMed ID: 12082133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolving the Conflict Between Associative Overdominance and Background Selection.
    Zhao L; Charlesworth B
    Genetics; 2016 Jul; 203(3):1315-34. PubMed ID: 27182952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic recombination and molecular evolution.
    Charlesworth B; Betancourt AJ; Kaiser VB; Gordo I
    Cold Spring Harb Symp Quant Biol; 2009; 74():177-86. PubMed ID: 19734202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.