These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 31866393)

  • 1. Stochastic models for description of structural-statistical properties in DNA sequences.
    Chaley M; Kutyrkin V
    J Theor Biol; 2020 Jul; 496():110126. PubMed ID: 31866393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic model of homogeneous coding and latent periodicity in DNA sequences.
    Chaley M; Kutyrkin V
    J Theor Biol; 2016 Feb; 390():106-16. PubMed ID: 26656186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Representation of DNA sequences in genetic codon context with applications in exon and intron prediction.
    Yin C
    J Bioinform Comput Biol; 2015 Apr; 13(2):1550004. PubMed ID: 25491390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of protein coding regions by the 3-base periodicity analysis of a DNA sequence.
    Yin C; Yau SS
    J Theor Biol; 2007 Aug; 247(4):687-94. PubMed ID: 17509616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical properties of open reading frames in complete genome sequences.
    Li W
    Comput Chem; 1999 Jun; 23(3-4):283-301. PubMed ID: 10404621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral-Statistical Approach for Revealing Latent Regular Structures in DNA Sequence.
    Chaley M; Kutyrkin V
    Methods Mol Biol; 2016; 1415():315-40. PubMed ID: 27115640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model of perfect tandem repeat with random pattern and empirical homogeneity testing poly-criteria for latent periodicity revelation in biological sequences.
    Chaley M; Kutyrkin V
    Math Biosci; 2008 Jan; 211(1):186-204. PubMed ID: 18062999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-state model for DNA protein-coding regions.
    Pinho AJ; Neves AJ; Afreixo V; Bastos CA; Ferreira PJ
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2148-55. PubMed ID: 17073319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A convolutional code-based sequence analysis model and its application.
    Liu X; Geng X
    Int J Mol Sci; 2013 Apr; 14(4):8393-405. PubMed ID: 23591850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Search of regular sequences in promoters from eukaryotic genomes.
    Shelenkov A; Korotkov E
    Comput Biol Chem; 2009 Jun; 33(3):196-204. PubMed ID: 19395315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of eukaryotic introns: a hypothesis, based on codon distribution statistics in genes, and its implications.
    Senapathy P
    Proc Natl Acad Sci U S A; 1986 Apr; 83(7):2133-7. PubMed ID: 3457379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between codon usage and sequence-dependent curvature of genomes.
    Jáuregui R; O'Reilly F; Bolivar F; Merino E
    Microb Comp Genomics; 1998; 3(4):243-53. PubMed ID: 10027193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TA, GT and AC are significantly under-represented in open reading frames of prokaryotic and eukaryotic protein-coding genes.
    Wang Y; Zeng Z; Liu TL; Sun L; Yao Q; Chen KP
    Mol Genet Genomics; 2019 Jun; 294(3):637-647. PubMed ID: 30758669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New tools to analyze overlapping coding regions.
    Bayegan AH; Garcia-Martin JA; Clote P
    BMC Bioinformatics; 2016 Dec; 17(1):530. PubMed ID: 27964762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Third codon G + C periodicity as a possible signal for an "internal" selective constraint.
    Lió P; Ruffo S; Buiatti M
    J Theor Biol; 1994 Nov; 171(2):215-23. PubMed ID: 7844999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutually symmetric and complementary triplets: differences in their use distinguish systematically between coding and non-coding genomic sequences.
    Nikolaou C; Almirantis Y
    J Theor Biol; 2003 Aug; 223(4):477-87. PubMed ID: 12875825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-base periodicity patterns and self-similarity in whole bacterial chromosomes.
    López-Villaseñor I; José MV; Sánchez J
    Biochem Biophys Res Commun; 2004 Dec; 325(2):467-78. PubMed ID: 15530416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetry of coding versus noncoding strand in coding sequences of different genomes.
    Cebrat S; Dudek MR; Mackiewicz P; Kowalczuk M; Fita M
    Microb Comp Genomics; 1997; 2(4):259-68. PubMed ID: 9689224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Latent periodicity of DNA sequences from some human gene regions.
    Korotkov EV; Korotkova MA
    DNA Seq; 1995; 5(6):353-8. PubMed ID: 8777314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.