These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Structure-Based Engineering of Phanerochaete chrysosporium Alcohol Oxidase for Enhanced Oxidative Power toward Glycerol. Nguyen QT; Romero E; Dijkman WP; de Vasconcellos SP; Binda C; Mattevi A; Fraaije MW Biochemistry; 2018 Oct; 57(43):6209-6218. PubMed ID: 30272958 [TBL] [Abstract][Full Text] [Related]
7. Role of Glu312 in binding and positioning of the substrate for the hydride transfer reaction in choline oxidase. Quaye O; Lountos GT; Fan F; Orville AM; Gadda G Biochemistry; 2008 Jan; 47(1):243-56. PubMed ID: 18072756 [TBL] [Abstract][Full Text] [Related]
8. X-ray structures of NADPH-dependent carbonyl reductase from Sporobolomyces salmonicolor provide insights into stereoselective reductions of carbonyl compounds. Kamitori S; Iguchi A; Ohtaki A; Yamada M; Kita K J Mol Biol; 2005 Sep; 352(3):551-8. PubMed ID: 16095619 [TBL] [Abstract][Full Text] [Related]
9. Two tyrosine residues, Tyr-108 and Tyr-503, are responsible for the deprotonation of phenolic substrates in vanillyl-alcohol oxidase. Ewing TA; Nguyen QT; Allan RC; Gygli G; Romero E; Binda C; Fraaije MW; Mattevi A; van Berkel WJH J Biol Chem; 2017 Sep; 292(35):14668-14679. PubMed ID: 28717004 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the substrate-binding site of human carbonyl reductases CBR1 and CBR3 by site-directed mutagenesis. El-Hawari Y; Favia AD; Pilka ES; Kisiela M; Oppermann U; Martin HJ; Maser E Chem Biol Interact; 2009 Mar; 178(1-3):234-41. PubMed ID: 19061875 [TBL] [Abstract][Full Text] [Related]
11. Tuning enzymatic properties by protein engineering toward catalytic tetrad of carbonyl reductase. Cheng F; Zhai QY; Gao XF; Liu HT; Qiu S; Wang YJ; Zheng YG Biotechnol Bioeng; 2021 Dec; 118(12):4643-4654. PubMed ID: 34436762 [TBL] [Abstract][Full Text] [Related]
14. Structure-guided engineering of Lactococcus lactis alcohol dehydrogenase LlAdhA for improved conversion of isobutyraldehyde to isobutanol. Liu X; Bastian S; Snow CD; Brustad EM; Saleski TE; Xu JH; Meinhold P; Arnold FH J Biotechnol; 2012 Dec; 164(2):188-95. PubMed ID: 22974724 [TBL] [Abstract][Full Text] [Related]
15. Studies on reduction of S-nitrosoglutathione by human carbonyl reductases 1 and 3. Staab CA; Hartmanová T; El-Hawari Y; Ebert B; Kisiela M; Wsol V; Martin HJ; Maser E Chem Biol Interact; 2011 May; 191(1-3):95-103. PubMed ID: 21256830 [TBL] [Abstract][Full Text] [Related]
16. Rational engineering of a malate dehydrogenase for microbial production of 2,4-dihydroxybutyric acid via homoserine pathway. Frazão CJR; Topham CM; Malbert Y; François JM; Walther T Biochem J; 2018 Dec; 475(23):3887-3901. PubMed ID: 30409827 [TBL] [Abstract][Full Text] [Related]
17. The X-ray structure of Brassica napus beta-keto acyl carrier protein reductase and its implications for substrate binding and catalysis. Fisher M; Kroon JT; Martindale W; Stuitje AR; Slabas AR; Rafferty JB Structure; 2000 Apr; 8(4):339-47. PubMed ID: 10801480 [TBL] [Abstract][Full Text] [Related]
18. Modulating O2 reactivity in a fungal flavoenzyme: involvement of aryl-alcohol oxidase Phe-501 contiguous to catalytic histidine. Hernández-Ortega A; Lucas F; Ferreira P; Medina M; Guallar V; Martínez AT J Biol Chem; 2011 Nov; 286(47):41105-14. PubMed ID: 21940622 [TBL] [Abstract][Full Text] [Related]
19. Substrate scope and selectivity in offspring to an enzyme subjected to directed evolution. Blikstad C; Dahlström KM; Salminen TA; Widersten M FEBS J; 2014 May; 281(10):2387-98. PubMed ID: 24673815 [TBL] [Abstract][Full Text] [Related]
20. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine. Schlegel BP; Ratnam K; Penning TM Biochemistry; 1998 Aug; 37(31):11003-11. PubMed ID: 9692994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]