These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31866427)

  • 1. Attenuated substrate inhibition of a haloketone reductase via structure-guided loop engineering.
    Shang YP; Chen Q; Li AT; Quan S; Xu JH; Yu HL
    J Biotechnol; 2020 Jan; 308():141-147. PubMed ID: 31866427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Streptomyces coelicolor Carbonyl Reductase for Efficient Atorvastatin Precursor Synthesis.
    Li M; Zhang ZJ; Kong XD; Yu HL; Zhou J; Xu JH
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389544
    [No Abstract]   [Full Text] [Related]  

  • 3. Structure-guided engineering of ChKRED20 from Chryseobacterium sp. CA49 for asymmetric reduction of aryl ketoesters.
    Li TB; Zhao FJ; Liu Z; Jin Y; Liu Y; Pei XQ; Zhang ZG; Wang G; Wu ZL
    Enzyme Microb Technol; 2019 Jun; 125():29-36. PubMed ID: 30885322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified substrate specificity of L-hydroxyisocaproate dehydrogenase derived from structure-based protein engineering.
    Feil IK; Hendle J; Schomburg D
    Protein Eng; 1997 Mar; 10(3):255-62. PubMed ID: 9153075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity.
    Lerchner A; Jarasch A; Meining W; Schiefner A; Skerra A
    Biotechnol Bioeng; 2013 Nov; 110(11):2803-14. PubMed ID: 23686719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-Based Engineering of Phanerochaete chrysosporium Alcohol Oxidase for Enhanced Oxidative Power toward Glycerol.
    Nguyen QT; Romero E; Dijkman WP; de Vasconcellos SP; Binda C; Mattevi A; Fraaije MW
    Biochemistry; 2018 Oct; 57(43):6209-6218. PubMed ID: 30272958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Glu312 in binding and positioning of the substrate for the hydride transfer reaction in choline oxidase.
    Quaye O; Lountos GT; Fan F; Orville AM; Gadda G
    Biochemistry; 2008 Jan; 47(1):243-56. PubMed ID: 18072756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray structures of NADPH-dependent carbonyl reductase from Sporobolomyces salmonicolor provide insights into stereoselective reductions of carbonyl compounds.
    Kamitori S; Iguchi A; Ohtaki A; Yamada M; Kita K
    J Mol Biol; 2005 Sep; 352(3):551-8. PubMed ID: 16095619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two tyrosine residues, Tyr-108 and Tyr-503, are responsible for the deprotonation of phenolic substrates in vanillyl-alcohol oxidase.
    Ewing TA; Nguyen QT; Allan RC; Gygli G; Romero E; Binda C; Fraaije MW; Mattevi A; van Berkel WJH
    J Biol Chem; 2017 Sep; 292(35):14668-14679. PubMed ID: 28717004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the substrate-binding site of human carbonyl reductases CBR1 and CBR3 by site-directed mutagenesis.
    El-Hawari Y; Favia AD; Pilka ES; Kisiela M; Oppermann U; Martin HJ; Maser E
    Chem Biol Interact; 2009 Mar; 178(1-3):234-41. PubMed ID: 19061875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning enzymatic properties by protein engineering toward catalytic tetrad of carbonyl reductase.
    Cheng F; Zhai QY; Gao XF; Liu HT; Qiu S; Wang YJ; Zheng YG
    Biotechnol Bioeng; 2021 Dec; 118(12):4643-4654. PubMed ID: 34436762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Re-design of Saccharomyces cerevisiae flavocytochrome b2: introduction of L-mandelate dehydrogenase activity.
    Sinclair R; Reid GA; Chapman SK
    Biochem J; 1998 Jul; 333 ( Pt 1)(Pt 1):117-20. PubMed ID: 9639570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of mouse succinic semialdehyde reductase AKR7A5: structural basis for substrate specificity.
    Zhu X; Lapthorn AJ; Ellis EM
    Biochemistry; 2006 Feb; 45(6):1562-70. PubMed ID: 16460003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-guided engineering of Lactococcus lactis alcohol dehydrogenase LlAdhA for improved conversion of isobutyraldehyde to isobutanol.
    Liu X; Bastian S; Snow CD; Brustad EM; Saleski TE; Xu JH; Meinhold P; Arnold FH
    J Biotechnol; 2012 Dec; 164(2):188-95. PubMed ID: 22974724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on reduction of S-nitrosoglutathione by human carbonyl reductases 1 and 3.
    Staab CA; Hartmanová T; El-Hawari Y; Ebert B; Kisiela M; Wsol V; Martin HJ; Maser E
    Chem Biol Interact; 2011 May; 191(1-3):95-103. PubMed ID: 21256830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational engineering of a malate dehydrogenase for microbial production of 2,4-dihydroxybutyric acid via homoserine pathway.
    Frazão CJR; Topham CM; Malbert Y; François JM; Walther T
    Biochem J; 2018 Dec; 475(23):3887-3901. PubMed ID: 30409827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The X-ray structure of Brassica napus beta-keto acyl carrier protein reductase and its implications for substrate binding and catalysis.
    Fisher M; Kroon JT; Martindale W; Stuitje AR; Slabas AR; Rafferty JB
    Structure; 2000 Apr; 8(4):339-47. PubMed ID: 10801480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating O2 reactivity in a fungal flavoenzyme: involvement of aryl-alcohol oxidase Phe-501 contiguous to catalytic histidine.
    Hernández-Ortega A; Lucas F; Ferreira P; Medina M; Guallar V; Martínez AT
    J Biol Chem; 2011 Nov; 286(47):41105-14. PubMed ID: 21940622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate scope and selectivity in offspring to an enzyme subjected to directed evolution.
    Blikstad C; Dahlström KM; Salminen TA; Widersten M
    FEBS J; 2014 May; 281(10):2387-98. PubMed ID: 24673815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine.
    Schlegel BP; Ratnam K; Penning TM
    Biochemistry; 1998 Aug; 37(31):11003-11. PubMed ID: 9692994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.