BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 31866541)

  • 41. Statistical optimization of P(3HB-co-3HHx) copolymers production by Cupriavidus necator PHB
    Trakunjae C; Boondaeng A; Apiwatanapiwat W; Janchai P; Neoh SZ; Sudesh K; Vaithanomsat P
    Sci Rep; 2023 Jun; 13(1):9005. PubMed ID: 37268758
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells: bone tissue engineering.
    Cheng Y; Ramos D; Lee P; Liang D; Yu X; Kumbar SG
    J Biomed Nanotechnol; 2014 Feb; 10(2):287-98. PubMed ID: 24738337
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigation of silk fibroin nanoparticle-decorated poly(l-lactic acid) composite scaffolds for osteoblast growth and differentiation.
    Chen BQ; Kankala RK; Chen AZ; Yang DZ; Cheng XX; Jiang NN; Zhu K; Wang SB
    Int J Nanomedicine; 2017; 12():1877-1890. PubMed ID: 28331312
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrogen sulfide-releasing silk fibroin scaffold for bone tissue engineering.
    Gambari L; Amore E; Raggio R; Bonani W; Barone M; Lisignoli G; Grigolo B; Motta A; Grassi F
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():471-482. PubMed ID: 31147018
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering.
    Tong S; Xu DP; Liu ZM; Du Y; Wang XK
    Int J Mol Med; 2016 Aug; 38(2):367-80. PubMed ID: 27352815
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intermolecular interactions between B. mori silk fibroin and poly(l-lactic acid) in electrospun composite nanofibrous scaffolds.
    Taddei P; Tozzi S; Zuccheri G; Martinotti S; Ranzato E; Chiono V; Carmagnola I; Tsukada M
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):777-787. PubMed ID: 27770955
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protein Nanofibril Assemblies Templated by Graphene Oxide Nanosheets Accelerate Early Cell Adhesion and Induce Osteogenic Differentiation of Human Mesenchymal Stem Cells.
    Shuai Y; Mao C; Yang M
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):31988-31997. PubMed ID: 30204402
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold.
    Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M
    Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Effect of vascular endothelial growth factor 165-loaded porous poly (ε-caprolactone) scaffolds on the osteogenic differentiation of adipose-derived stem cells].
    Xu W; Lu H; Ye J; Yang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Mar; 32(3):270-275. PubMed ID: 29806274
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functionalization of Silk Fibroin Electrospun Scaffolds via BMSC Affinity Peptide Grafting through Oxidative Self-Polymerization of Dopamine for Bone Regeneration.
    Wu J; Cao L; Liu Y; Zheng A; Jiao D; Zeng D; Wang X; Kaplan DL; Jiang X
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8878-8895. PubMed ID: 30777748
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering.
    Shao W; He J; Sang F; Ding B; Chen L; Cui S; Li K; Han Q; Tan W
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():342-51. PubMed ID: 26478319
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biosynthesis of poly(glycolate-co-3-hydroxybutyrate-co-3-hydroxyhexanoate) in Escherichia coli expressing sequence-regulating polyhydroxyalkanoate synthase and medium-chain-length 3-hydroxyalkanoic acid coenzyme A ligase.
    Tomita H; Satoh K; Nomura CT; Matsumoto K
    Biosci Biotechnol Biochem; 2022 Jan; 86(2):217-223. PubMed ID: 34788370
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A review on poly(3-hydroxybutyrate-
    Tang HJ; Neoh SZ; Sudesh K
    Front Bioeng Biotechnol; 2022; 10():1057067. PubMed ID: 36545679
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Response of human mesenchymal stem cells (hMSCs) to the topographic variation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) films.
    Yu BY; Chen PY; Sun YM; Lee YT; Young TH
    J Biomater Sci Polym Ed; 2012; 23(1-4):1-26. PubMed ID: 21762548
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Potential of inherent RGD containing silk fibroin-poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Bhattacharya D; Maiti TK; Kundu SC
    Cell Tissue Res; 2016 Feb; 363(2):525-40. PubMed ID: 26174955
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pore size modulates in vitro osteogenesis of bone marrow mesenchymal stem cells in fibronectin/gelatin coated silk fibroin scaffolds.
    Ai C; Liu L; Goh JC
    Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112088. PubMed ID: 33947578
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Three-dimensional silk fibroin scaffolds enhance the bone formation and angiogenic differentiation of human amniotic mesenchymal stem cells: a biocompatibility analysis.
    Li Y; Liu Z; Tang Y; Fan Q; Feng W; Luo C; Dai G; Ge Z; Zhang J; Zou G; Liu Y; Hu N; Huang W
    Acta Biochim Biophys Sin (Shanghai); 2020 Jun; 52(6):590-602. PubMed ID: 32393968
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Promoting the recovery of injured liver with poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) scaffolds loaded with umbilical cord-derived mesenchymal stem cells.
    Li P; Zhang J; Liu J; Ma H; Liu J; Lie P; Wang Y; Liu G; Zeng H; Li Z; Wei X
    Tissue Eng Part A; 2015 Feb; 21(3-4):603-15. PubMed ID: 25273546
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development.
    Mota C; Wang SY; Puppi D; Gazzarri M; Migone C; Chiellini F; Chen GQ; Chiellini E
    J Tissue Eng Regen Med; 2017 Jan; 11(1):175-186. PubMed ID: 24889107
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combining molecular and bioprocess techniques to produce poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with controlled monomer composition by Burkholderia sacchari.
    Mendonça TT; Tavares RR; Cespedes LG; Sánchez-Rodriguez RJ; Schripsema J; Taciro MK; Gomez JG; Silva LF
    Int J Biol Macromol; 2017 May; 98():654-663. PubMed ID: 28167112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.