These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31866603)

  • 1. A Novel Metal Adsorbent Composed of a Hexa-histidine Tag and a Carbohydrate-binding Module on Cellulose.
    Togo Y; Nakashima K; Mwandira W; Kawasaki S
    Anal Sci; 2020 Apr; 36(4):459-464. PubMed ID: 31866603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel nanoparticle-doped paper as a bioactive scaffold for targeted and robust immobilization of functional proteins.
    Bodelón G; Mourdikoudis S; Yate L; Pastoriza-Santos I; Pérez-Juste J; Liz-Marzán LM
    ACS Nano; 2014 Jun; 8(6):6221-31. PubMed ID: 24811229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling Protein Surface Orientation by Strategic Placement of Oligo-Histidine Tags.
    Wasserberg D; Cabanas-Danés J; Prangsma J; O'Mahony S; Cazade PA; Tromp E; Blum C; Thompson D; Huskens J; Subramaniam V; Jonkheijm P
    ACS Nano; 2017 Sep; 11(9):9068-9083. PubMed ID: 28850777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anchoring of histidine-tagged proteins to molecular printboards: self-assembly, thermodynamic modeling, and patterning.
    Ludden MJ; Mulder A; Schulze K; Subramaniam V; Tampé R; Huskens J
    Chemistry; 2008; 14(7):2044-51. PubMed ID: 18189256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on ni-nitrilotriacetic acid surfaces.
    Khan F; He M; Taussig MJ
    Anal Chem; 2006 May; 78(9):3072-9. PubMed ID: 16642995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific adsorption of histidine-tagged proteins on silica surfaces modified with Ni2+/NTA-derivatized poly(ethylene glycol).
    Kang E; Park JW; McClellan SJ; Kim JM; Holland DP; Lee GU; Franses EI; Park K; Thompson DH
    Langmuir; 2007 May; 23(11):6281-8. PubMed ID: 17444666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the catalytic behavior of pullulanases chelated onto nickel (II)-modified magnetic nanoparticles.
    Wang J; Liu Z; Zhou Z
    Enzyme Microb Technol; 2017 Jun; 101():9-16. PubMed ID: 28433193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong and heterogeneous adsorption of infectious bursal disease VP2 subviral particle with immobilized metal ions dependent on two surface histidine residues.
    Doong SR; Chen YH; Lai SY; Lee CC; Lin YC; Wang MY
    Anal Chem; 2007 Oct; 79(20):7654-61. PubMed ID: 17877419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of material properties upon immobilization of histidine-tagged protein on Ni-Co coated chip.
    Chang YJ; Ho CY; Chang CH
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():369-73. PubMed ID: 24582262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetra-nickel substituted polyoxotungsate as an efficient sorbent for the isolation of His6-tagged proteins from cell lysate.
    Wang MM; Chen Q; Zhang DD; Chen XW; Chen ML
    Talanta; 2017 Aug; 171():173-178. PubMed ID: 28551125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorptive refolding of histidine-tagged glutathione S-transferase using metal affinity chromatography.
    Hutchinson MH; Chase HA
    J Chromatogr A; 2006 Sep; 1128(1-2):125-32. PubMed ID: 16842804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Driving forces for the adsorption of a His-tag Chagas antigen. A rational approach to design bio-functional surfaces.
    Valenti LE; Smania AM; De Pauli CP; Giacomelli CE
    Colloids Surf B Biointerfaces; 2013 Dec; 112():294-301. PubMed ID: 24001449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging and measuring single-molecule interaction between a carbohydrate-binding module and natural plant cell wall cellulose.
    Zhang M; Wu SC; Zhou W; Xu B
    J Phys Chem B; 2012 Aug; 116(33):9949-56. PubMed ID: 22849362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbohydrate-binding modules recognize fine substructures of cellulose.
    McLean BW; Boraston AB; Brouwer D; Sanaie N; Fyfe CA; Warren RA; Kilburn DG; Haynes CA
    J Biol Chem; 2002 Dec; 277(52):50245-54. PubMed ID: 12191997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nickel(II)-immobilized sulfhydryl cotton fiber for selective binding and rapid separation of histidine-tagged proteins.
    He XM; Zhu GT; Lu W; Yuan BF; Wang H; Feng YQ
    J Chromatogr A; 2015 Jul; 1405():188-92. PubMed ID: 26087962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and characterization of Ni-NTA-bearing microspheres.
    Lauer SA; Nolan JP
    Cytometry; 2002 Jul; 48(3):136-45. PubMed ID: 12116359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilized metal affinity cryogel-based high-throughput platform for screening bioprocess and chromatographic parameters of His
    Sarkar J; Kumar A
    Anal Bioanal Chem; 2017 Apr; 409(11):2951-2965. PubMed ID: 28283714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of nickel nanoparticles for binding to his-tag proteins and antigens.
    Patel JD; O'Carra R; Jones J; Woodward JG; Mumper RJ
    Pharm Res; 2007 Feb; 24(2):343-52. PubMed ID: 17180725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusing a carbohydrate-binding module into the Aspergillus usamii β-mannanase to improve its thermostability and cellulose-binding capacity by in silico design.
    Tang CD; Li JF; Wei XH; Min R; Gao SJ; Wang JQ; Yin X; Wu MC
    PLoS One; 2013; 8(5):e64766. PubMed ID: 23741390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding affinity of family 4 carbohydrate binding module on cellulose films of nanocrystals and nanofibrils.
    Liu T; Zhang Y; Lu X; Wang P; Zhang X; Tian J; Wang Q; Song J; Jin Y; Xiao H
    Carbohydr Polym; 2021 Jan; 251():116725. PubMed ID: 33142548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.