BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 31866690)

  • 1. Acrylamide in food: Progress in and prospects for genetic and agronomic solutions.
    Raffan S; Halford NG
    Ann Appl Biol; 2019 Nov; 175(3):259-281. PubMed ID: 31866690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acrylamide in Bakery Products: A Review on Health Risks, Legal Regulations and Strategies to Reduce Its Formation.
    Sarion C; Codină GG; Dabija A
    Int J Environ Res Public Health; 2021 Apr; 18(8):. PubMed ID: 33921874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and agronomic approaches to decreasing acrylamide precursors in crop plants.
    Halford NG; Muttucumaru N; Curtis TY; Parry MA
    Food Addit Contam; 2007; 24 Suppl 1():26-36. PubMed ID: 17687697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction in Dietary Acrylamide Exposure-Impact of Potatoes with Low Acrylamide Potential.
    Tran NL; Barraj LM; Collinge S
    Risk Anal; 2017 Sep; 37(9):1754-1767. PubMed ID: 27866376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing the Risk of Acrylamide and Other Processing Contaminant Formation in Wheat Products.
    Kaur N; Halford NG
    Foods; 2023 Aug; 12(17):. PubMed ID: 37685197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The acrylamide problem: a plant and agronomic science issue.
    Halford NG; Curtis TY; Muttucumaru N; Postles J; Elmore JS; Mottram DS
    J Exp Bot; 2012 May; 63(8):2841-51. PubMed ID: 22345642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silencing of vacuolar invertase and asparagine synthetase genes and its impact on acrylamide formation of fried potato products.
    Zhu X; Gong H; He Q; Zeng Z; Busse JS; Jin W; Bethke PC; Jiang J
    Plant Biotechnol J; 2016 Feb; 14(2):709-18. PubMed ID: 26079224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acrylamide-forming potential of potatoes grown at different locations, and the ratio of free asparagine to reducing sugars at which free asparagine becomes a limiting factor for acrylamide formation.
    Muttucumaru N; Powers SJ; Elmore JS; Dodson A; Briddon A; Mottram DS; Halford NG
    Food Chem; 2017 Apr; 220():76-86. PubMed ID: 27855938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acrylamide-asparagine relationship in baked/toasted wheat and rye breads.
    Granby K; Nielsen NJ; Hedegaard RV; Christensen T; Kann M; Skibsted LH
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Aug; 25(8):921-9. PubMed ID: 18608496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of variety and nutrient availability on the acrylamide-forming potential of rye grain.
    Postles J; Powers SJ; Elmore JS; Mottram DS; Halford NG
    J Cereal Sci; 2013 May; 57(3):463-470. PubMed ID: 23805028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current issues in dietary acrylamide: formation, mitigation and risk assessment.
    Pedreschi F; Mariotti MS; Granby K
    J Sci Food Agric; 2014 Jan; 94(1):9-20. PubMed ID: 23939985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic modelling of acrylamide formation during the finish-frying of french fries with variable maltose content.
    Balagiannis DP; Mottram DS; Higley J; Smith G; Wedzicha BL; Parker JK
    Food Chem; 2019 Jun; 284():236-244. PubMed ID: 30744852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free asparagine and sugars profile of cereal species: the potential of cereals for acrylamide formation in foods.
    Žilić S; Dodig D; Basić Z; Vančetović J; Titan P; Đurić N; Tolimir N
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 May; 34(5):705-713. PubMed ID: 28150529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for the complex relationship between free amino acid and sugar concentrations and acrylamide-forming potential in potato.
    Muttucumaru N; Powers S; Elmore J; Briddon A; Mottram D; Halford N
    Ann Appl Biol; 2014 Jan; 164(2):286-300. PubMed ID: 25540460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing Dietary Acrylamide Exposure from Wheat Products through Crop Management and Imaging.
    Oddy J; Addy J; Mead A; Hall C; Mackay C; Ashfield T; McDiarmid F; Curtis TY; Raffan S; Wilkinson M; Elmore JS; Cryer N; de Almeida IM; Halford NG
    J Agric Food Chem; 2023 Feb; 71(7):3403-13. PubMed ID: 36745538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentrations of free amino acids and sugars in nine potato varieties: effects of storage and relationship with acrylamide formation.
    Halford NG; Muttucumaru N; Powers SJ; Gillatt PN; Hartley L; Elmore JS; Mottram DS
    J Agric Food Chem; 2012 Dec; 60(48):12044-55. PubMed ID: 23126451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reducing acrylamide precursors in raw materials derived from wheat and potato.
    Muttucumaru N; Elmore JS; Curtis T; Mottram DS; Parry MA; Halford NG
    J Agric Food Chem; 2008 Aug; 56(15):6167-72. PubMed ID: 18624429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of acrylamide: an industry perspective on research, analysis, formation, and control.
    Taeymans D; Wood J; Ashby P; Blank I; Studer A; Stadler RH; Gondé P; Van Eijck P; Lalljie S; Lingnert H; Lindblom M; Matissek R; Müller D; Tallmadge D; O'Brien J; Thompson S; Silvani D; Whitmore T
    Crit Rev Food Sci Nutr; 2004; 44(5):323-47. PubMed ID: 15540646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acrylamide formation in biscuits made of different wholegrain flours depending on their free asparagine content and baking conditions.
    Žilić S; Aktağ IG; Dodig D; Filipović M; Gökmen V
    Food Res Int; 2020 Jun; 132():109109. PubMed ID: 32331630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Sulphur Response in Wheat Grain and Its Implications for Acrylamide Formation and Food Safety.
    Raffan S; Oddy J; Halford NG
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32485924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.