These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31866696)

  • 1. Integrating field and laboratory approaches for ripple development in mixed sand-clay-EPS.
    Baas JH; Baker ML; Malarkey J; Bass SJ; Manning AJ; Hope JA; Peakall J; Lichtman ID; Ye L; Davies AG; Parsons DR; Paterson DM; Thorne PD
    Sedimentology; 2019 Dec; 66(7):2749-2768. PubMed ID: 31866696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discontinuity in Equilibrium Wave-Current Ripple Size and Shape and Deep Cleaning Associated With Cohesive Sand-Clay Beds.
    Wu X; Fernandez R; Baas JH; Malarkey J; Parsons DR
    J Geophys Res Earth Surf; 2022 Sep; 127(9):e2022JF006771. PubMed ID: 36582745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microalgal mediation of ripple mobility.
    Friend PL; Lucas CH; Holligan PM; Collins MB
    Geobiology; 2008 Jan; 6(1):70-82. PubMed ID: 18380887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pervasive role of biological cohesion in bedform development.
    Malarkey J; Baas JH; Hope JA; Aspden RJ; Parsons DR; Peakall J; Paterson DM; Schindler RJ; Ye L; Lichtman ID; Bass SJ; Davies AG; Manning AJ; Thorne PD
    Nat Commun; 2015 Feb; 6():6257. PubMed ID: 25656496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for better microphytobenthos dynamics in mixed sand/mud zones than in pure sand or mud intertidal flats (Seine estuary, Normandy, France).
    Morelle J; Claquin P; Orvain F
    PLoS One; 2020; 15(8):e0237211. PubMed ID: 32760132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large wind ripples on Mars: A record of atmospheric evolution.
    Lapotre MG; Ewing RC; Lamb MP; Fischer WW; Grotzinger JP; Rubin DM; Lewis KW; Ballard MJ; Day M; Gupta S; Banham SG; Bridges NT; Des Marais DJ; Fraeman AA; Grant JA; Herkenhoff KE; Ming DW; Mischna MA; Rice MS; Sumner DY; Vasavada AR; Yingst RA
    Science; 2016 Jul; 353(6294):55-8. PubMed ID: 27365444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the formation of current ripples.
    Bartholdy J; Ernstsen VB; Flemming BW; Winter C; Bartholomä A; Kroon A
    Sci Rep; 2015 Jun; 5():11390. PubMed ID: 26065918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sand ripple dynamics in the case of out-of-equilibrium aeolian regimes.
    Misbah C; Valance A
    Eur Phys J E Soft Matter; 2003 Dec; 12(4):523-9. PubMed ID: 15007749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-time behavior of sand ripples induced by water shear flow.
    Betat A; Kruelle CA; Frette V; Rehberg I
    Eur Phys J E Soft Matter; 2002 Aug; 8(5):465-76. PubMed ID: 15015119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of biophysical cohesion on subaqueous bed form size.
    Parsons DR; Schindler RJ; Hope JA; Malarkey J; Baas JH; Peakall J; Manning AJ; Ye L; Simmons S; Paterson DM; Aspden RJ; Bass SJ; Davies AG; Lichtman ID; Thorne PD
    Geophys Res Lett; 2016 Feb; 43(4):1566-1573. PubMed ID: 27011393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accretion of mudstone beds from migrating floccule ripples.
    Schieber J; Southard J; Thaisen K
    Science; 2007 Dec; 318(5857):1760-3. PubMed ID: 18079398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sticky stuff: biological cohesion for scour and erosion prevention.
    Schindler R; Whitehouse R; Harris J
    Environ Technol; 2023 Sep; 44(21):3161-3175. PubMed ID: 35392768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of phytoplankton productivity and exopolysaccharides (EPS and TEP) pools in the Seine Estuary (France, Normandy) over tidal cycles and over two contrasting seasons.
    Morelle J; Schapira M; Claquin P
    Mar Environ Res; 2017 Oct; 131():162-176. PubMed ID: 28988854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelength selection of rolling-grain ripples in the laboratory.
    Rousseaux G; Stegner A; Wesfreid JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031307. PubMed ID: 15089286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars.
    Ewing RC; Lapotre MGA; Lewis KW; Day M; Stein N; Rubin DM; Sullivan R; Banham S; Lamb MP; Bridges NT; Gupta S; Fischer WW
    J Geophys Res Planets; 2017 Dec; 122(12):2544-2573. PubMed ID: 29497590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Study on the Incipient Movement of Muddy Clay under Different Salinity Conditions.
    Zhang X; Liu X; Wu H; Liu S; Zhu Y; Bi Z; Xu Z
    ScientificWorldJournal; 2022; 2022():5245928. PubMed ID: 36105736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A distinct ripple-formation regime on Mars revealed by the morphometrics of barchan dunes.
    Rubanenko L; Lapôtre MGA; Ewing RC; Fenton LK; Gunn A
    Nat Commun; 2022 Nov; 13(1):7156. PubMed ID: 36418350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct numerical simulations of aeolian sand ripples.
    Durán O; Claudin P; Andreotti B
    Proc Natl Acad Sci U S A; 2014 Nov; 111(44):15665-8. PubMed ID: 25331873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical model of asymmetric wave ripples.
    Blondeaux P; Foti E; Vittori G
    Philos Trans A Math Phys Eng Sci; 2015 Jan; 373(2033):. PubMed ID: 25512587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brachiopods, sipunculans, enteropneusts and metals from two estuarine tidal flats, Pacific, Costa Rica.
    Vargas JA; Acuña-González J; Vásquez F; Sibaja-Cordero JA
    Rev Biol Trop; 2016 Sep; 64(3):1311-31. PubMed ID: 29462547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.