These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31866772)

  • 1. Gastric Seed: Towards Distributed Ultrasonically Interrogated Millimeter-Sized Implants for Large-Scale Gastric Electrical-Wave Recording.
    Meng M; Kiani M
    IEEE Trans Circuits Syst II Express Briefs; 2019 May; 66(5):783-787. PubMed ID: 31866772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Ultrasonically Powered Wireless System for In Vivo Gastric Slow-Wave Recording.
    Meng M; Graybill P; Ramos RL; Javan-Khoshkholgh A; Farajidavar A; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():7064-7067. PubMed ID: 31947464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Image-Guided Ultrasonic Wireless Power Transmission to Millimeter-Sized Biomedical Implants.
    Meng M; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():364-367. PubMed ID: 31945916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Inductive Voltage/Current-Mode Integrated Power Management with Seamless Mode Transition and Energy Recycling.
    Gougheri HS; Kiani M
    IEEE J Solid-State Circuits; 2019 Mar; 54(3):847-884. PubMed ID: 31662585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-low-power wireless transmitter for neural prostheses with modified pulse position modulation.
    Goodarzy F; Skafidas SE
    Healthc Technol Lett; 2014 Jan; 1(1):37-9. PubMed ID: 26609374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive control of the power transferred to an implanted device by an ultrasonic transcutaneous energy transfer link.
    Shmilovitz D; Ozeri S; Wang CC; Spivak B
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):995-1004. PubMed ID: 24013825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Optimization of Ultrasonic Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants.
    Meng M; Kiani M
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):98-107. PubMed ID: 27662684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An RF-Ultrasound Relay for Adaptive Wireless Powering Across Tissue Interfaces.
    So E; Yeon P; Chichilnisky EJ; Arbabian A
    IEEE J Solid-State Circuits; 2022 Nov; 57(11):3429-3441. PubMed ID: 37138581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless Ultrasonic Communication for Biomedical Injectable Implantable Device.
    Jaafar B; Soltan A; Neasham J; Degenaar P
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4024-4027. PubMed ID: 31946754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiaccess In Vivo Biotelemetry Using Sonomicrometry and M-Scan Ultrasound Imaging.
    Kondapalli SH; Alazzawi Y; Malinowski M; Timek T; Chakrabartty S
    IEEE Trans Biomed Eng; 2018 Jan; 65(1):149-158. PubMed ID: 28459681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chip-Scale Coils for Millimeter-Sized Bio-Implants.
    Feng P; Yeon P; Cheng Y; Ghovanloo M; Constandinou TG
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1088-1099. PubMed ID: 30040662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wireless Power Transfer to Millimeter-Sized Nodes Using Airborne Ultrasound.
    Rekhi AS; Khuri-Yakub BT; Arbabian A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Oct; 64(10):1526-1541. PubMed ID: 28796616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ultrasonically controlled switching system for power management in implantable devices.
    Zhou J; Kim A; Ziaie B
    Biomed Microdevices; 2018 May; 20(2):42. PubMed ID: 29789965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Implantable Ultrasonically Powered System for Optogenetic Stimulation with Power-Efficient Active Rectifier and Charge-Reuse Capability.
    Rashidi A; Laursen K; Hosseini S; Huynh HA; Moradi F
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1362-1371. PubMed ID: 31647446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Access Networking with Wireless Ultrasound-Powered Implants.
    Chang TC; Wang M; Arbabian A
    IEEE Biomed Circuits Syst Conf; 2019 Oct; 2019():. PubMed ID: 31989118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards a highly-scalable wireless implantable system-on-a-chip for gastric electrophysiology.
    Ibrahim A; Farajidavar A; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2689-92. PubMed ID: 26736846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mm-Sized Free-Floating Wireless Implantable Opto-Electro Stimulation Device.
    Jia Y; Gong Y; Weber A; Li W; Ghovanloo M
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32630557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers.
    Choi H; Shung KK
    Biomed Eng Online; 2014 Jun; 13():76. PubMed ID: 24924595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal resonance configuration for ultrasonic wireless power transmission to millimeter-sized biomedical implants.
    Miao Meng ; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1934-1937. PubMed ID: 28268706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Optimization of Ultrasonic Links With Phased Arrays for Wireless Power Transmission to Biomedical Implants.
    Kashani Z; Ilham SJ; Kiani M
    IEEE Trans Biomed Circuits Syst; 2022 Feb; 16(1):64-78. PubMed ID: 34986100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.