BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31867)

  • 21. Pentose Shunt, Glucose-6-Phosphate Dehydrogenase, NADPH Redox, and Stem Cells in Pulmonary Hypertension.
    Hashimoto R; Gupte S
    Adv Exp Med Biol; 2017; 967():47-55. PubMed ID: 29047080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlation between reduced nicotinamide adenine dinucleotide phosphate levels and morphological changes in Neurospora crassa.
    Brody S
    J Bacteriol; 1970 Mar; 101(3):802-7. PubMed ID: 4392398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors.
    Lu W; Wang L; Chen L; Hui S; Rabinowitz JD
    Antioxid Redox Signal; 2018 Jan; 28(3):167-179. PubMed ID: 28497978
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hexose-6-phosphate dehydrogenase in the endoplasmic reticulum.
    Senesi S; Csala M; Marcolongo P; Fulceri R; Mandl J; Banhegyi G; Benedetti A
    Biol Chem; 2010 Jan; 391(1):1-8. PubMed ID: 19804362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of erythrocytic glucose-6-phosphate dehydrogenase in a mouse strain with reduced G6PD activity.
    Neifer S; Jung A; Bienzle U
    Biomed Biochim Acta; 1991; 50(3):233-8. PubMed ID: 1953691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of the pentose phosphate cycle in bass (Dicentrarchus labrax L.) liver.
    Medina-Puerta MM; Gallego-Iniesta M; Garrido-Pertierra A
    Rev Esp Fisiol; 1988 Dec; 44(4):433-9. PubMed ID: 3244891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glucose-6-phosphate dehydrogenase-deficient cells show an increased propensity for oxidant-induced senescence.
    Cheng ML; Ho HY; Wu YH; Chiu DT
    Free Radic Biol Med; 2004 Mar; 36(5):580-91. PubMed ID: 14980702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics and significance of the reverse glucose-6-phosphate dehydrogenase reaction.
    Beutler E; Kuhl W
    J Lab Clin Med; 1986 Jun; 107(6):502-7. PubMed ID: 3711719
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The regulation of glucose-6-phosphate dehydrogenase in chloroplasts.
    Wildner GF
    Z Naturforsch C Biosci; 1975; 30(6):756-60. PubMed ID: 3047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for two types of hydrogen atom in reduced nicotinamide-adenine dinucleotide phosphate arising from glucose 6-phosphate oxidation, based on the inhibitory action of certain steroids.
    Altmann FP; Chayen J
    Biochem J; 1970 Jun; 118(2):6P-7P. PubMed ID: 4394950
    [No Abstract]   [Full Text] [Related]  

  • 31. Protective effects of glucose-6-phosphate and NADP against alpha-chaconine-induced developmental toxicity in Xenopus embryos.
    Rayburn JR; Bantle JA; Qualls CW; Friedman M
    Food Chem Toxicol; 1995 Dec; 33(12):1021-5. PubMed ID: 8846997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymes of glucose metabolism in normal mouse pancreatic islets.
    Ashcroft SJ; Randle PJ
    Biochem J; 1970 Aug; 119(1):5-15. PubMed ID: 4395001
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification and characterization of glucose-6-phosphate dehydrogenase from Cryptococcus neoformans: identification as "nothing dehydrogenase".
    Niehaus WG; Mallett TC
    Arch Biochem Biophys; 1994 Sep; 313(2):304-9. PubMed ID: 8080277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TRAF6-Mediated SM22α K21 Ubiquitination Promotes G6PD Activation and NADPH Production, Contributing to GSH Homeostasis and VSMC Survival In Vitro and In Vivo.
    Dong LH; Li L; Song Y; Duan ZL; Sun SG; Lin YL; Miao SB; Yin YJ; Shu YN; Li H; Chen P; Zhao LL; Han M
    Circ Res; 2015 Sep; 117(8):684-94. PubMed ID: 26291555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NADP-dehydrogenases from pepper fruits: effect of maturation.
    Mateos RM; Bonilla-Valverde D; del Río LA; Palma JM; Corpas FJ
    Physiol Plant; 2009 Feb; 135(2):130-9. PubMed ID: 19055545
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The regulation of the oxidative phase of the pentose phosphate pathway: new answers to old problems.
    Barcia-Vieitez R; Ramos-Martínez JI
    IUBMB Life; 2014 Nov; 66(11):775-9. PubMed ID: 25408203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glucose-6-phosphate dehydrogenase from a tetracycline producing strain of Streptomyces aureofaciens: some properties and regulatory aspects of the enzyme.
    Neuzil J; Novotná J; Erban V; Bĕhal V; Hostálek Z
    Biochem Int; 1988 Jul; 17(1):187-96. PubMed ID: 3142475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Occurrence of old yellow enzyme in Gluconobacter suboxydans, and the cyclic regeneration of NADP.
    Adachi O; Matsushita K; Shinagawa E; Ameyama M
    J Biochem; 1979 Sep; 86(3):699-709. PubMed ID: 41838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interrelationship and control of glucose metabolism and lipogenesis in isolated fat-cells. Control of pentose phosphate-cycle activity by cellular requirement for reduced nicotinamide adenine dinucleotide phosphate.
    Kather H; Rivera M; Brand K
    Biochem J; 1972 Aug; 128(5):1097-102. PubMed ID: 4404963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemical adaptation of rat liver in response to marginal oxygen toxicity.
    Gorman RR; Jordan JP; Simmons JB; Clarkson DP
    Biochem J; 1971 Nov; 125(2):439-47. PubMed ID: 4401379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.