BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31867)

  • 41. Decreased content of reduced and oxidized nicotinamide-adenine dinucleotide phosphate in rat hepatomas.
    Ross DA; Jackson RC; Weber G; Morris HP
    Cancer Biochem Biophys; 1982; 6(2):61-4. PubMed ID: 7151032
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinetics of the reaction of baker's yeast glucose-6-phosphate dehydrogenase with 5,5'-dithiobis(2-nitrobenzoic acid).
    Adediran SA; Gbadegesin MR
    Arch Biochem Biophys; 1995 Sep; 322(1):39-42. PubMed ID: 7574692
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pentose phosphate shunt metabolism by cells of the chick growth cartilage.
    Silverton SF; Matsumoto H; DeBolt K; Reginato A; Shapiro IM
    Bone; 1989; 10(1):45-51. PubMed ID: 2736155
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Some mechanisms of carbohydrate metabolism regulation with NADP participation].
    Golovats'kiĭ ID; Kolotnits'kiĭ AG; Krasnevich AIa
    Ukr Biokhim Zh; 1977; 49(3):35-8. PubMed ID: 18829
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Determination of the Cytosolic NADPH/NADP Ratio in Saccharomyces cerevisiae using Shikimate Dehydrogenase as Sensor Reaction.
    Zhang J; ten Pierick A; van Rossum HM; Seifar RM; Ras C; Daran JM; Heijnen JJ; Wahl SA
    Sci Rep; 2015 Aug; 5():12846. PubMed ID: 26243542
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of the pentose phosphate cycle.
    Eggleston LV; Krebs HA
    Biochem J; 1974 Mar; 138(3):425-35. PubMed ID: 4154743
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glucose 6-phosphate dehydrogenase overexpression models glucose deprivation and sensitizes lymphoma cells to apoptosis.
    Tome ME; Johnson DB; Samulitis BK; Dorr RT; Briehl MM
    Antioxid Redox Signal; 2006; 8(7-8):1315-27. PubMed ID: 16910779
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sample pretreatment with nitrate reductase and glucose-6-phosphate dehydrogenase quantitatively reduces nitrate while avoiding interference by NADP+ when the Griess reaction is used to assay for nitrite.
    Verdon CP; Burton BA; Prior RL
    Anal Biochem; 1995 Jan; 224(2):502-8. PubMed ID: 7733451
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Production and characterization of reduced NAADP (nicotinic acid-adenine dinucleotide phosphate).
    Billington RA; Thuring JW; Conway SJ; Packman L; Holmes AB; Genazzani AA
    Biochem J; 2004 Feb; 378(Pt 1):275-80. PubMed ID: 14606955
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Purification and characterization of the NAD-preferring glucose 6-phosphate dehydrogenase from Acetobacter hansenii (Acetobacter xylinum).
    Ragunathan S; Levy HR
    Arch Biochem Biophys; 1994 May; 310(2):360-6. PubMed ID: 8179320
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reduced Nicotinamide Adenine Dinucleotide Phosphate, a Pentose Phosphate Pathway Product, Might Be a Novel Drug Candidate for Ischemic Stroke.
    Li M; Zhou ZP; Sun M; Cao L; Chen J; Qin YY; Gu JH; Han F; Sheng R; Wu JC; Ding Y; Qin ZH
    Stroke; 2016 Jan; 47(1):187-95. PubMed ID: 26564104
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Possible Role of Glucose-6-Phosphate Dehydrogenase in the SARS-CoV-2 Infection.
    Pérez-Torres I; Soto ME; Guarner-Lans V; Manzano-Pech L; Soria-Castro E
    Cells; 2022 Jun; 11(13):. PubMed ID: 35805067
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Effects of prostaglandin F 2 alpha on the activity of NADP-dependent dehydrogenases].
    Kudriavtseva GV; Tsarenko EP
    Biokhimiia; 1980 Apr; 45(4):594-600. PubMed ID: 7189671
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nicotinamide adenine dinucleotide phosphate-converting enzymes and adenosine triphosphate citrate lyase in some tissues and organs of New Zealand obese mice with special reference to the enzyme pattern of the pancreatic islets.
    Berne C
    J Histochem Cytochem; 1975 Sep; 23(9):660-5. PubMed ID: 240882
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Estimating the number of viable animal cells in multiwell culture--a tetrazolium-based assay.
    Haslam G; Richter M; Wyatt D; Ye QZ; Kitos P
    Anal Biochem; 2005 Jan; 336(2):187-95. PubMed ID: 15620883
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In situ glucose-6-phosphate dehydrogenase activity during development of pre-implantation mouse embryos.
    De Schepper GG; Vander Perk C; Westerveld A; Oosting J; Van Noorden CJ
    Histochem J; 1993 Apr; 25(4):299-303. PubMed ID: 8491670
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of nicotinamide adenine dinucleotide (NAD)-dependent glucose-6-phosphate dehydrogenase in enzyme staining procedures.
    Buth DG; Murphy RW
    Stain Technol; 1980 May; 55(3):173-6. PubMed ID: 6161446
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Amino acids and ammonia in the cerebral cortex, the corpus striatum and the brain stem of the mouse prior to the onset and after a seizure induced by hyperbaric oxygen.
    Mialon P; Joanny P; Gibey R; Cann-Moisan C; Caroff J; Steinberg J; Barthélémy L
    Brain Res; 1995 Apr; 676(2):352-7. PubMed ID: 7614005
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidized and reduced nicotinamide-adenine dinucleotide phosphate in tissue suspensions of rat liver.
    Slater TF
    Biochem J; 1967 Sep; 104(3):833-42. PubMed ID: 4383080
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of estradiol and nicotinamide adenine dinucleotide phosphate on rate of degradation of uterine glucose-6-phosphate dehydrogenase.
    Smith ER; Barker KL
    J Biol Chem; 1977 Jun; 252(11):3709-14. PubMed ID: 16911
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.