BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31867077)

  • 1. Effect of ME Collimator Characteristic, Energy Window Width, and Reconstruction Algorithm Selection on Imaging Performance of Yttrium-90: Simulation Study.
    Taherparvar P; Shahmari N
    Nucl Med Mol Imaging; 2019 Dec; 53(6):414-422. PubMed ID: 31867077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collimator and energy window optimization for ⁹⁰Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study.
    Roshan HR; Mahmoudian B; Gharepapagh E; Azarm A; Pirayesh Islamian J
    Appl Radiat Isot; 2016 Feb; 108():124-128. PubMed ID: 26720261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation the effect of different collimators and energy window on Y-90 bremsstrahlung SPECT imaging by SIMIND Monte Carlo program.
    Taherparvar P; Shahmari N
    Nucl Med Rev Cent East Eur; 2019; 22(2):45-55. PubMed ID: 31482556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy Window and Contrast Optimization for Single-photon Emission Computed Tomography Bremsstrahlung Imaging with Yttrium-90.
    Bouzekraoui Y; Bentayeb F; Asmi H; Bonutti F
    Indian J Nucl Med; 2019; 34(2):125-128. PubMed ID: 31040523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and evaluation of an improved quantitative (90)Y bremsstrahlung SPECT method.
    Rong X; Du Y; Ljungberg M; Rault E; Vandenberghe S; Frey EC
    Med Phys; 2012 May; 39(5):2346-58. PubMed ID: 22559605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A collimator optimization method for quantitative imaging: application to Y-90 bremsstrahlung SPECT.
    Rong X; Frey EC
    Med Phys; 2013 Aug; 40(8):082504. PubMed ID: 23927349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collimator and energy window optimization for YTTRIUM-90 bremsstrahlung SPECT imaging.
    İnce C; Karadeniz Ö; Ertay T; Durak H
    Appl Radiat Isot; 2021 Jan; 167():109453. PubMed ID: 33039763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phantom and clinical evaluation of the effect of full Monte Carlo collimator modelling in post-SIRT yttrium-90 Bremsstrahlung SPECT imaging.
    Porter CA; Bradley KM; Hippeläinen ET; Walker MD; McGowan DR
    EJNMMI Res; 2018 Jan; 8(1):7. PubMed ID: 29356993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging.
    Rong X; Du Y; Frey EC
    Phys Med Biol; 2012 Jun; 57(12):3711-25. PubMed ID: 22617760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of energy window for 90Y bremsstrahlung SPECT imaging for detection tasks using the ideal observer with model-mismatch.
    Rong X; Ghaly M; Frey EC
    Med Phys; 2013 Jun; 40(6):062502. PubMed ID: 23718607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Parallel-hole Collimator Material on Image and Functional Parameters in SPECT Imaging: A SIMIND Monte Carlo Study.
    Azarm A; Islamian JP; Mahmoudian B; Gharepapagh E
    World J Nucl Med; 2015; 14(3):160-4. PubMed ID: 26420985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of quantitative (90)Y SPECT based on experimental phantom studies.
    Minarik D; Sjögreen Gleisner K; Ljungberg M
    Phys Med Biol; 2008 Oct; 53(20):5689-703. PubMed ID: 18812648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPECT performance evaluation on image of Yttrium 90 - Bremsstrahlung using Monte Carlo simulation.
    Pastrana Orejuela CO; de Assis Coelho F; Oliveira SM; Souza SAL; Vasconcellos de Sá L; Xavier da Silva A; Torres Berdeguez MB
    Appl Radiat Isot; 2021 Feb; 168():109456. PubMed ID: 33321371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Planar gamma camera imaging and quantitation of yttrium-90 bremsstrahlung.
    Shen S; DeNardo GL; Yuan A; DeNardo DA; DeNardo SJ
    J Nucl Med; 1994 Aug; 35(8):1381-9. PubMed ID: 8046498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SIMIND Monte Carlo simulation of a single photon emission CT.
    Bahreyni Toossi MT; Islamian JP; Momennezhad M; Ljungberg M; Naseri SH
    J Med Phys; 2010 Jan; 35(1):42-7. PubMed ID: 20177569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Monte Carlo study on the performance evaluation of a parallel hole collimator for a HiReSPECT: A dedicated small-animal SPECT.
    Abbaspour S; Tanha K; Mahmoudian B; Assadi M; Pirayesh Islamian J
    Appl Radiat Isot; 2018 Sep; 139():53-60. PubMed ID: 29704706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved quantitative
    Dewaraja YK; Chun SY; Srinivasa RN; Kaza RK; Cuneo KC; Majdalany BS; Novelli PM; Ljungberg M; Fessler JA
    Med Phys; 2017 Dec; 44(12):6364-6376. PubMed ID: 28940483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation of PET and SPECT imaging of 90Y.
    Takahashi A; Himuro K; Yamashita Y; Komiya I; Baba S; Sasaki M
    Med Phys; 2015 Apr; 42(4):1926-35. PubMed ID: 25832083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment of a clinical SPECT/CT protocol for imaging of
    Marin I; Rydèn T; Van Essen M; Svensson J; Gracheva N; Köster U; Zeevaart JR; van der Meulen NP; Müller C; Bernhardt P
    EJNMMI Phys; 2020 Jul; 7(1):45. PubMed ID: 32613587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Monte Carlo-based 90Y SPECT reconstruction.
    Elschot M; Lam MG; van den Bosch MA; Viergever MA; de Jong HW
    J Nucl Med; 2013 Sep; 54(9):1557-63. PubMed ID: 23907758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.