These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 31867146)
1. Structural Motifs of Wheat Straw Lignin Differ in Susceptibility to Degradation by the White-Rot Fungus van Erven G; Wang J; Sun P; de Waard P; van der Putten J; Frissen GE; Gosselink RJA; Zinovyev G; Potthast A; van Berkel WJH; Kabel MA ACS Sustain Chem Eng; 2019 Dec; 7(24):20032-20042. PubMed ID: 31867146 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic insight in the selective delignification of wheat straw by three white-rot fungal species through quantitative van Erven G; Nayan N; Sonnenberg ASM; Hendriks WH; Cone JW; Kabel MA Biotechnol Biofuels; 2018; 11():262. PubMed ID: 30263063 [TBL] [Abstract][Full Text] [Related]
3. A comprehensive study of the promoting effect of manganese on white rot fungal treatment for enzymatic hydrolysis of woody and grass lignocellulose. Fu X; Zhang J; Gu X; Yu H; Chen S Biotechnol Biofuels; 2021 Sep; 14(1):176. PubMed ID: 34488855 [TBL] [Abstract][Full Text] [Related]
4. Improving ruminal digestibility of various wheat straw types by white-rot fungi. Nayan N; van Erven G; Kabel MA; Sonnenberg AS; Hendriks WH; Cone JW J Sci Food Agric; 2019 Jan; 99(2):957-965. PubMed ID: 30125969 [TBL] [Abstract][Full Text] [Related]
5. A highly diastereoselective oxidant contributes to Ligninolysis by the white rot basidiomycete Ceriporiopsis subvermispora. Yelle DJ; Kapich AN; Houtman CJ; Lu F; Timokhin VI; Fort RC; Ralph J; Hammel KE Appl Environ Microbiol; 2014 Dec; 80(24):7536-44. PubMed ID: 25261514 [TBL] [Abstract][Full Text] [Related]
6. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. del Río JC; Rencoret J; Prinsen P; Martínez ÁT; Ralph J; Gutiérrez A J Agric Food Chem; 2012 Jun; 60(23):5922-35. PubMed ID: 22607527 [TBL] [Abstract][Full Text] [Related]
7. Structural Characteristics of the Guaiacyl-Rich Lignins From Rice ( Rosado MJ; Rencoret J; Marques G; Gutiérrez A; Del Río JC Front Plant Sci; 2021; 12():640475. PubMed ID: 33679856 [TBL] [Abstract][Full Text] [Related]
8. Selective ligninolysis of wheat straw and wood chips by the white-rot fungus Lentinula edodes and its influence on in vitro rumen degradability. van Kuijk SJ; Del Río JC; Rencoret J; Gutiérrez A; Sonnenberg AS; Baars JJ; Hendriks WH; Cone JW J Anim Sci Biotechnol; 2016; 7():55. PubMed ID: 27688879 [TBL] [Abstract][Full Text] [Related]
9. Oxidation-driven lignin removal by Agaricus bisporus from wheat straw-based compost at industrial scale. Duran K; Miebach J; van Erven G; Baars JJP; Comans RNJ; Kuyper TW; Kabel MA Int J Biol Macromol; 2023 Aug; 246():125575. PubMed ID: 37385314 [TBL] [Abstract][Full Text] [Related]
10. Isolation and structural characterization of the milled wood lignin, dioxane lignin, and cellulolytic lignin preparations from brewer's spent grain. Rencoret J; Prinsen P; Gutiérrez A; Martínez ÁT; Del Río JC J Agric Food Chem; 2015 Jan; 63(2):603-13. PubMed ID: 25520237 [TBL] [Abstract][Full Text] [Related]
11. Tritordeum, a hybrid cereal with a highly tricin-enriched lignin. Benito J; Marques G; Rosado MJ; Barro F; Gutiérrez A; Del Río JC; Rencoret J Int J Biol Macromol; 2024 Mar; 261(Pt 2):129694. PubMed ID: 38281525 [TBL] [Abstract][Full Text] [Related]
13. Evidence That Ceriporiopsis subvermispora Degrades Nonphenolic Lignin Structures by a One-Electron-Oxidation Mechanism. Srebotnik E; Jensen KA; Kawai S; Hammel KE Appl Environ Microbiol; 1997 Nov; 63(11):4435-40. PubMed ID: 16535732 [TBL] [Abstract][Full Text] [Related]
14. Structural characterization of lignin isolated from coconut (Cocos nucifera) coir fibers. Rencoret J; Ralph J; Marques G; Gutiérrez A; Martínez Á; del Río JC J Agric Food Chem; 2013 Mar; 61(10):2434-45. PubMed ID: 23398235 [TBL] [Abstract][Full Text] [Related]
15. Evidence for ligninolytic activity of the ascomycete fungus van Erven G; Kleijn AF; Patyshakuliyeva A; Di Falco M; Tsang A; de Vries RP; van Berkel WJH; Kabel MA Biotechnol Biofuels; 2020; 13():75. PubMed ID: 32322305 [TBL] [Abstract][Full Text] [Related]
16. Methane fermentation of Japanese cedar wood pretreated with a white rot fungus, Ceriporiopsis subvermispora. Amirta R; Tanabe T; Watanabe T; Honda Y; Kuwahara M; Watanabe T J Biotechnol; 2006 May; 123(1):71-7. PubMed ID: 16290242 [TBL] [Abstract][Full Text] [Related]
17. Effects of lignin modification on wheat straw cell wall deconstruction by Phanerochaete chrysosporium. Zeng J; Singh D; Gao D; Chen S Biotechnol Biofuels; 2014; 7(1):161. PubMed ID: 25516769 [TBL] [Abstract][Full Text] [Related]
18. Differences between two strains of Ceriporiopsis subvermispora on improving the nutritive value of wheat straw for ruminants. Nayan N; Sonnenberg ASM; Hendriks WH; Cone JW J Appl Microbiol; 2017 Aug; 123(2):352-361. PubMed ID: 28517113 [TBL] [Abstract][Full Text] [Related]
19. New Insights on Structures Forming the Lignin-Like Fractions of Ancestral Plants. Rencoret J; Gutiérrez A; Marques G; Del Río JC; Tobimatsu Y; Lam PY; Pérez-Boada M; Ruiz-Dueñas FJ; Barrasa JM; Martínez AT Front Plant Sci; 2021; 12():740923. PubMed ID: 34691117 [TBL] [Abstract][Full Text] [Related]
20. The effect of particle size and amount of inoculum on fungal treatment of wheat straw and wood chips. van Kuijk SJ; Sonnenberg AS; Baars JJ; Hendriks WH; Cone JW J Anim Sci Biotechnol; 2016; 7():39. PubMed ID: 27418962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]