BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 31867270)

  • 1. Targeting of the Eukaryotic Translation Initiation Factor 4A Against Breast Cancer Stemness.
    Sridharan S; Robeson M; Bastihalli-Tukaramrao D; Howard CM; Subramaniyan B; Tilley AMC; Tiwari AK; Raman D
    Front Oncol; 2019; 9():1311. PubMed ID: 31867270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance.
    Sridharan S; Howard CM; Tilley AMC; Subramaniyan B; Tiwari AK; Ruch RJ; Raman D
    Front Oncol; 2019; 9():1003. PubMed ID: 31681564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. eIF4A/PDCD4 Pathway, a Factor for Doxorubicin Chemoresistance in a Triple-Negative Breast Cancer Cell Model.
    González-Ortiz A; Pulido-Capiz A; Castañeda-Sánchez CY; Ibarra-López E; Galindo-Hernández O; Calderón-Fernández MA; López-Cossio LY; Díaz-Molina R; Chimal-Vega B; Serafín-Higuera N; Córdova-Guerrero I; García-González V
    Cells; 2022 Dec; 11(24):. PubMed ID: 36552834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual targeting of DDX3 and eIF4A by the translation inhibitor rocaglamide A.
    Chen M; Asanuma M; Takahashi M; Shichino Y; Mito M; Fujiwara K; Saito H; Floor SN; Ingolia NT; Sodeoka M; Dodo K; Ito T; Iwasaki S
    Cell Chem Biol; 2021 Apr; 28(4):475-486.e8. PubMed ID: 33296667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of NuMA1 in breast cancer stem cells with implications for combination therapy of PIM1 and autophagy inhibition in triple negative breast cancer.
    Manupati K; Hao M; Haas M; Yeo SK; Guan JL
    Res Sq; 2024 Apr; ():. PubMed ID: 38645153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor.
    Iwasaki S; Floor SN; Ingolia NT
    Nature; 2016 Jun; 534(7608):558-61. PubMed ID: 27309803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WNT pathway inhibitor pyrvinium pamoate inhibits the self-renewal and metastasis of breast cancer stem cells.
    Xu L; Zhang L; Hu C; Liang S; Fei X; Yan N; Zhang Y; Zhang F
    Int J Oncol; 2016 Mar; 48(3):1175-86. PubMed ID: 26781188
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Rios-Fuller TJ; Ortiz-Soto G; Lacourt-Ventura M; Maldonado-Martinez G; Cubano LA; Schneider RJ; Martinez-Montemayor MM
    Oncotarget; 2018 Nov; 9(89):35907-35921. PubMed ID: 30542507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Breast Cancer Stem Cells in Chemoresistance and Metastasis in Triple-Negative Breast Cancer.
    He L; Wick N; Germans SK; Peng Y
    Cancers (Basel); 2021 Dec; 13(24):. PubMed ID: 34944829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FBXL2 promotes E47 protein instability to inhibit breast cancer stemness and paclitaxel resistance.
    Li F; Niu M; Qin K; Guo R; Yi Y; Xu J; Li L; Xie S; Fu M; Wen N; Liao W; Xiao ZJ
    Oncogene; 2023 Jan; 42(5):339-350. PubMed ID: 36460773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STAT3 as a promising chemoresistance biomarker associated with the CD44
    Moreira MP; da Conceição Braga L; Cassali GD; Silva LM
    Exp Cell Res; 2018 Feb; 363(2):283-290. PubMed ID: 29352988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upregulated SCUBE2 expression in breast cancer stem cells enhances triple negative breast cancer aggression through modulation of notch signaling and epithelial-to-mesenchymal transition.
    Chen JH; Kuo KT; Bamodu OA; Lin YC; Yang RB; Yeh CT; Chao TY
    Exp Cell Res; 2018 Sep; 370(2):444-453. PubMed ID: 29981340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel eIF4A1 inhibitors with anti-tumor activity in lymphoma.
    Kayastha F; Herrington NB; Kapadia B; Roychowdhury A; Nanaji N; Kellogg GE; Gartenhaus RB
    Mol Med; 2022 Sep; 28(1):101. PubMed ID: 36058921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate Dehydrogenase-A (LDH-A) Preserves Cancer Stemness and Recruitment of Tumor-Associated Macrophages to Promote Breast Cancer Progression.
    Wang S; Ma L; Wang Z; He H; Chen H; Duan Z; Li Y; Si Q; Chuang TH; Chen C; Luo Y
    Front Oncol; 2021; 11():654452. PubMed ID: 34178639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The CXCR4-LASP1-eIF4F Axis Promotes Translation of Oncogenic Proteins in Triple-Negative Breast Cancer Cells.
    Howard CM; Bearss N; Subramaniyan B; Tilley A; Sridharan S; Villa N; Fraser CS; Raman D
    Front Oncol; 2019; 9():284. PubMed ID: 31106142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential role of miR-200c in regulating self-renewal of breast cancer stem cells and their counterparts of mammary epithelium.
    Feng ZM; Qiu J; Chen XW; Liao RX; Liao XY; Zhang LP; Chen X; Li Y; Chen ZT; Sun JG
    BMC Cancer; 2015 Sep; 15():645. PubMed ID: 26400441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bladder cancer stem cells: clonal origin and therapeutic perspectives.
    Li Y; Lin K; Yang Z; Han N; Quan X; Guo X; Li C
    Oncotarget; 2017 Sep; 8(39):66668-66679. PubMed ID: 29029546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling of Gene Expression Associated with Stemness and Aggressiveness of ALDH1A1-Expressing Human Breast Cancer Cells.
    Wanandi SI; Syahrani RA; Arumsari S; Wideani G; Hardiany NS
    Malays J Med Sci; 2019 Sep; 26(5):38-52. PubMed ID: 31728117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lentivirus-mediated shRNA targeting Nanog inhibits cell proliferation and attenuates cancer stem cell activities in breast cancer.
    Hu C; Xu L; Liang S; Zhang Z; Zhang Y; Zhang F
    J Drug Target; 2016; 24(5):422-32. PubMed ID: 26339994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long Noncoding RNA
    Chen X; Xie R; Gu P; Huang M; Han J; Dong W; Xie W; Wang B; He W; Zhong G; Chen Z; Huang J; Lin T
    Clin Cancer Res; 2019 Feb; 25(4):1389-1403. PubMed ID: 30397178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.