These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 318673)

  • 1. Separation of epidermis from dermis with sodium thiocyanate.
    Diaz LA; Heaphy MR; Calvanico NJ; Tomasi TB; Jordon RE
    J Invest Dermatol; 1977 Jan; 68(1):36-8. PubMed ID: 318673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermolysin treatment: a new method for dermo-epidermal separation.
    Walzer C; Benathan M; Frenk E
    J Invest Dermatol; 1989 Jan; 92(1):78-81. PubMed ID: 2642514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction of high-quality epidermal RNA after ammonium thiocyanate-induced dermo-epidermal separation of 4 mm human skin biopsies.
    Clemmensen A; Thomassen M; Clemmensen O; Tan Q; Kruse TA; Petersen TK; Andersen F; Andersen KE
    Exp Dermatol; 2009 Nov; 18(11):979-84. PubMed ID: 19645824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of the epidermal basement membrane after enzymatic dermal-epidermal separation of embryonic mouse skin.
    Bard S; Sengel P
    Arch Anat Microsc Morphol Exp; 1984; 73(4):239-57. PubMed ID: 6537737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct immunofluorescence microscopy of 1 mol/L sodium chloride-treated patient skin.
    Domloge-Hultsch N; Bisalbutra P; Gammon WR; Yancey KB
    J Am Acad Dermatol; 1991 Jun; 24(6 Pt 1):946-51. PubMed ID: 1869682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultrastructural comparison of dermo-epidermal separation techniques.
    Willsteed EM; Bhogal BS; Das A; Bekir SS; Wojnarowska F; Black MM; Mckee PH
    J Cutan Pathol; 1991 Feb; 18(1):8-12. PubMed ID: 2022768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiating anti-lamina lucida and anti-sublamina densa anti-BMZ antibodies by indirect immunofluorescence on 1.0 M sodium chloride-separated skin.
    Gammon WR; Briggaman RA; Inman AO; Queen LL; Wheeler CE
    J Invest Dermatol; 1984 Feb; 82(2):139-44. PubMed ID: 6363567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dermal-Epidermal Separation by Chemical.
    Jian L; Cao Y; Zou Y
    Methods Mol Biol; 2020; 2109():31-33. PubMed ID: 31792754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal conditions of 1 M NaCl splitting technique to demonstrate basement membrane zone antigens in bullous pemphigoid, epidermolysis bullosa acquisita and linear IgA bullous dermatoses.
    Jenkins RE; Rodenas J; Bhogal BS; Black MM
    Dermatology; 1994; 189 Suppl 1():133-4. PubMed ID: 8049556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of basement membrane in recombinants of epidermis and dermis of chick embryonic skin in vitro: an electron microscopic study.
    Akimoto Y; Obinata A; Endo H; Hirano H
    Anat Rec; 1991 Nov; 231(3):375-82. PubMed ID: 1763819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Heterogenicity of anti-basal membrane antibodies in pemphigoid. Research with the method of dermo-epidermal separation].
    Fabbri P; Geti V
    G Ital Dermatol Venereol; 1990 Sep; 125(9):375-81. PubMed ID: 2079347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The epidermal basement membrane zone--structure, ontogeny, and role in disease.
    Katz SI
    J Am Acad Dermatol; 1984 Dec; 11(6):1025-37. PubMed ID: 6512049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 97 kDa linear IgA bullous dermatosis antigen localizes in the lamina lucida between the NC16A and carboxyl terminal domains of the 180 kDa bullous pemphigoid antigen.
    Ishiko A; Shimizu H; Masunaga T; Yancey KB; Giudice GJ; Zone JJ; Nishikawa T
    J Invest Dermatol; 1998 Jul; 111(1):93-6. PubMed ID: 9665393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations of basement membrane zone in autoimmune subepidermal bullous diseases.
    Woźniak K; Kowalewski C
    J Dermatol Sci; 2005 Dec; 40(3):169-75. PubMed ID: 15990279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dithiothreitol separation of newborn rodent dermis and epidermis.
    Epstein EH; Munderloh NH; Fukuyama K
    J Invest Dermatol; 1979 Sep; 73(3):207-10. PubMed ID: 469273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunohistochemical study of basement membrane reconstruction by an epidermis-dermis recombination experiment using cultured chick embryonic skin: induction of tenascin.
    Akimoto Y; Obinata A; Endo H; Hirano H
    J Histochem Cytochem; 1992 Aug; 40(8):1129-37. PubMed ID: 1377733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bullous pemphigoid: role of complement and mechanisms for blister formation within the lamina lucida.
    Iwata H; Kitajima Y
    Exp Dermatol; 2013 Jun; 22(6):381-5. PubMed ID: 23651418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ultrastructural localization of IgA deposits in chronic bullous disease of childhood (CBDC).
    Dabrowski J; Chorzelski TP; Jablońska S; Kraińska T; Jarzabek-Chorzelska M
    J Invest Dermatol; 1979 Jun; 72(6):291-5. PubMed ID: 376753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel immune-mediated subepidermal bullous dermatosis characterized by IgG autoantibodies to a lower lamina lucida component.
    Chan LS; Cooper KD
    Arch Dermatol; 1994 Mar; 130(3):343-7. PubMed ID: 8129413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double immunofluorescence microscopy: a method for localizing immune deposits in skin diseases associated with linear basement membrane zone immunofluorescence.
    Gammon WR; Robinson T; Briggaman RA; Wheeler CE
    J Invest Dermatol; 1982 Nov; 79(5):312-7. PubMed ID: 6752293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.