These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31867311)

  • 1. Identifying Acetylation Protein by Fusing Its PseAAC and Functional Domain Annotation.
    Qiu WR; Xu A; Xu ZC; Zhang CH; Xiao X
    Front Bioeng Biotechnol; 2019; 7():311. PubMed ID: 31867311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting S-nitrosylation proteins and sites by fusing multiple features.
    Qiu WR; Wang QK; Guan MY; Jia JH; Xiao X
    Math Biosci Eng; 2021 Oct; 18(6):9132-9147. PubMed ID: 34814339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iPTM-mLys: identifying multiple lysine PTM sites and their different types.
    Qiu WR; Sun BQ; Xiao X; Xu ZC; Chou KC
    Bioinformatics; 2016 Oct; 32(20):3116-3123. PubMed ID: 27334473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Prediction of Ubiquitination Proteins Using Evolutionary Profiles and Functional Domain Annotation.
    Qiu W; Xu C; Xiao X; Xu D
    Curr Genomics; 2019 Aug; 20(5):389-399. PubMed ID: 32476995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying Pupylation Proteins and Sites by Incorporating Multiple Methods.
    Qiu WR; Guan MY; Wang QK; Lou LL; Xiao X
    Front Endocrinol (Lausanne); 2022; 13():849549. PubMed ID: 35557849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iRice-MS: An integrated XGBoost model for detecting multitype post-translational modification sites in rice.
    Lv H; Zhang Y; Wang JS; Yuan SS; Sun ZJ; Dao FY; Guan ZX; Lin H; Deng KJ
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic analysis of human lysine acetylation proteins and accurate prediction of human lysine acetylation through bi-relative adapted binomial score Bayes feature representation.
    Shao J; Xu D; Hu L; Kwan YW; Wang Y; Kong X; Ngai SM
    Mol Biosyst; 2012 Nov; 8(11):2964-73. PubMed ID: 22936054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction and functional analysis of prokaryote lysine acetylation site by incorporating six types of features into Chou's general PseAAC.
    Chen G; Cao M; Yu J; Guo X; Shi S
    J Theor Biol; 2019 Jan; 461():92-101. PubMed ID: 30365945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pLoc_bal-mEuk: Predict Subcellular Localization of Eukaryotic Proteins by General PseAAC and Quasi-balancing Training Dataset.
    Chou KC; Cheng X; Xiao X
    Med Chem; 2019; 15(5):472-485. PubMed ID: 30569871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pLoc_bal-mVirus: Predict Subcellular Localization of Multi-Label Virus Proteins by Chou's General PseAAC and IHTS Treatment to Balance Training Dataset.
    Xiao X; Cheng X; Chen G; Mao Q; Chou KC
    Med Chem; 2019; 15(5):496-509. PubMed ID: 30556503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iPhos-PseEvo: Identifying Human Phosphorylated Proteins by Incorporating Evolutionary Information into General PseAAC via Grey System Theory.
    Qiu WR; Sun BQ; Xiao X; Xu D; Chou KC
    Mol Inform; 2017 May; 36(5-6):. PubMed ID: 28488814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Nepsilon-acetylation on internal lysines implemented in Bayesian Discriminant Method.
    Li A; Xue Y; Jin C; Wang M; Yao X
    Biochem Biophys Res Commun; 2006 Dec; 350(4):818-24. PubMed ID: 17045240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iPPI-PseAAC(CGR): Identify protein-protein interactions by incorporating chaos game representation into PseAAC.
    Jia J; Li X; Qiu W; Xiao X; Chou KC
    J Theor Biol; 2019 Jan; 460():195-203. PubMed ID: 30312687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phogly-PseAAC: Prediction of lysine phosphoglycerylation in proteins incorporating with position-specific propensity.
    Xu Y; Ding YX; Ding J; Wu LY; Deng NY
    J Theor Biol; 2015 Aug; 379():10-5. PubMed ID: 25913879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iAcety-SmRF: Identification of Acetylation Protein by Using Statistical Moments and Random Forest.
    Malebary S; Rahman S; Barukab O; Ash'ari R; Khan SA
    Membranes (Basel); 2022 Feb; 12(3):. PubMed ID: 35323738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC.
    Cheng X; Lin WZ; Xiao X; Chou KC
    Bioinformatics; 2019 Feb; 35(3):398-406. PubMed ID: 30010789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method to distinguish between lysine acetylation and lysine ubiquitination with feature selection and analysis.
    Zhou Y; Zhang N; Li BQ; Huang T; Cai YD; Kong XY
    J Biomol Struct Dyn; 2015; 33(11):2479-90. PubMed ID: 25616595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iCataly-PseAAC: Identification of Enzymes Catalytic Sites Using Sequence Evolution Information with Grey Model GM (2,1).
    Xiao X; Hui MJ; Liu Z; Qiu WR
    J Membr Biol; 2015 Dec; 248(6):1033-41. PubMed ID: 26077845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC.
    Qiu WR; Sun BQ; Xiao X; Xu ZC; Chou KC
    Oncotarget; 2016 Jul; 7(28):44310-44321. PubMed ID: 27322424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.