These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 31867342)

  • 1. Accurate Biomolecular Simulations Account for Electronic Polarization.
    Melcr J; Piquemal JP
    Front Mol Biosci; 2019; 6():143. PubMed ID: 31867342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some practical approaches to treating electrostatic polarization of proteins.
    Ji C; Mei Y
    Acc Chem Res; 2014 Sep; 47(9):2795-803. PubMed ID: 24883956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Representations and Response Models for Polarizable Force Fields.
    Li A; Voronin A; Fenley AT; Gilson MK
    J Phys Chem B; 2016 Aug; 120(33):8668-84. PubMed ID: 27248842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization.
    Duboué-Dijon E; Javanainen M; Delcroix P; Jungwirth P; Martinez-Seara H
    J Chem Phys; 2020 Aug; 153(5):050901. PubMed ID: 32770904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explicit polarization: a quantum mechanical framework for developing next generation force fields.
    Gao J; Truhlar DG; Wang Y; Mazack MJ; Löffler P; Provorse MR; Rehak P
    Acc Chem Res; 2014 Sep; 47(9):2837-45. PubMed ID: 25098651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonaqueous Ion Pairing Exemplifies the Case for Including Electronic Polarization in Molecular Dynamics Simulations.
    Kostal V; Jungwirth P; Martinez-Seara H
    J Phys Chem Lett; 2023 Oct; 14(39):8691-8696. PubMed ID: 37733610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarizable Force Fields for Biomolecular Simulations: Recent Advances and Applications.
    Jing Z; Liu C; Cheng SY; Qi R; Walker BD; Piquemal JP; Ren P
    Annu Rev Biophys; 2019 May; 48():371-394. PubMed ID: 30916997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force Fields for Small Molecules.
    Lin FY; MacKerell AD
    Methods Mol Biol; 2019; 2022():21-54. PubMed ID: 31396898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Modeling of Water-in-Salt Electrolytes: A Comprehensive Analysis of Polarization Effects and Force Field Parameters in Molecular Dynamics Simulations.
    Rezaei M; Sakong S; Groß A
    J Chem Theory Comput; 2023 Sep; 19(17):5712-5730. PubMed ID: 37528639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accounting for polarization cost when using fixed charge force fields. I. Method for computing energy.
    Swope WC; Horn HW; Rice JE
    J Phys Chem B; 2010 Jul; 114(26):8621-30. PubMed ID: 20540503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transferable and Polarizable Coarse Grained Model for Proteins─ProMPT.
    Sahoo A; Lee PY; Matysiak S
    J Chem Theory Comput; 2022 Aug; 18(8):5046-5055. PubMed ID: 35793442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of extended Lagrangian dynamics in GROMACS for polarizable simulations using the classical Drude oscillator model.
    Lemkul JA; Roux B; van der Spoel D; MacKerell AD
    J Comput Chem; 2015 Jul; 36(19):1473-9. PubMed ID: 25962472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate modeling of RNA hairpins through the explicit treatment of electronic polarizability with the classical Drude oscillator force field.
    Sengul MY; MacKerell AD
    J Comput Biophys Chem; 2022 Jun; 21(4):461-471. PubMed ID: 35756549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of room temperature ionic liquids: from polarizable to coarse-grained force fields.
    Salanne M
    Phys Chem Chem Phys; 2015 Jun; 17(22):14270-9. PubMed ID: 25592219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge Scaling Manifesto: A Way of Reconciling the Inherently Macroscopic and Microscopic Natures of Molecular Simulations.
    Kirby BJ; Jungwirth P
    J Phys Chem Lett; 2019 Dec; 10(23):7531-7536. PubMed ID: 31743030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher Accuracy Achieved in the Simulations of Protein Structure Refinement, Protein Folding, and Intrinsically Disordered Proteins Using Polarizable Force Fields.
    Wang A; Zhang Z; Li G
    J Phys Chem Lett; 2018 Dec; 9(24):7110-7116. PubMed ID: 30514082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparing and Analyzing Polarizable Molecular Dynamics Simulations with the Classical Drude Oscillator Model.
    Lemkul JA
    Methods Mol Biol; 2021; 2315():219-240. PubMed ID: 34302679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic continuum model for molecular dynamics simulations of biological molecules.
    Leontyev IV; Stuchebrukhov AA
    J Chem Theory Comput; 2010; 6(5):1498-508. PubMed ID: 25364313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient formulation of polarizable Gaussian multipole electrostatics for biomolecular simulations.
    Wei H; Qi R; Wang J; Cieplak P; Duan Y; Luo R
    J Chem Phys; 2020 Sep; 153(11):114116. PubMed ID: 32962395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in.
    Ditzler MA; Otyepka M; Sponer J; Walter NG
    Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.