These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 3186747)

  • 1. A genomic DNA segment from Petunia hybrida leads to increased transformation frequencies and simple integration patterns.
    Meyer P; Kartzke S; Niedenhof I; Heidmann I; Bussmann K; Saedler H
    Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8568-72. PubMed ID: 3186747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular analysis of transgenic plants generated by microprojectile bombardment: effect of petunia transformation booster sequence.
    Buising CM; Benbow RM
    Mol Gen Genet; 1994 Apr; 243(1):71-81. PubMed ID: 8190073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transformation booster sequence from Petunia hybrida is a retrotransposon derivative that binds to the nuclear scaffold.
    Galliano H; Müller AE; Lucht JM; Meyer P
    Mol Gen Genet; 1995 Jun; 247(5):614-22. PubMed ID: 7603441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A repetitive DNA fragment carrying a hot spot for de novo DNA methylation enhances expression variegation in tobacco and petunia.
    ten Lohuis M; Müller A; Heidmann I; Niedenhof I; Meyer P
    Plant J; 1995 Dec; 8(6):919-32. PubMed ID: 8580962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The methylation patterns of chromosomal integration regions influence gene activity of transferred DNA in Petunia hybrida.
    Pröls F; Meyer P
    Plant J; 1992 Jul; 2(4):465-75. PubMed ID: 1344886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure, expression, chromosomal location and product of the gene encoding ADH1 in Petunia.
    Gregerson R; McLean M; Beld M; Gerats AG; Strommer J
    Plant Mol Biol; 1991 Jul; 17(1):37-48. PubMed ID: 1678286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of foreign sequences into the tobacco plastome via polyethylene glycol-mediated protoplast transformation.
    Koop HU; Steinmüller K; Wagner H; Rössler C; Eibl C; Sacher L
    Planta; 1996; 199(2):193-201. PubMed ID: 8680308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved approach for transformation of plant cells by microinjection: molecular and genetic analysis.
    Schnorf M; Neuhaus-Url G; Galli A; Iida S; Potrykus I; Neuhaus G
    Transgenic Res; 1991 Dec; 1(1):23-30. PubMed ID: 1668908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants.
    Deblaere R; Bytebier B; De Greve H; Deboeck F; Schell J; Van Montagu M; Leemans J
    Nucleic Acids Res; 1985 Jul; 13(13):4777-88. PubMed ID: 4022773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental regulation of expression of the malate synthase gene in transgenic plants.
    Graham IA; Smith LM; Leaver CJ; Smith SM
    Plant Mol Biol; 1990 Oct; 15(4):539-49. PubMed ID: 2102373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear DNA introduced into carrot protoplasts by electroporation undergoes ligation and recircularization.
    Bates GW; Carle SA; Piastuch WC
    Plant Mol Biol; 1990 Jun; 14(6):899-908. PubMed ID: 2102875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable transformation of tobacco by electroporation: evidence for plasmid concatenation.
    Riggs CD; Bates GW
    Proc Natl Acad Sci U S A; 1986 Aug; 83(15):5602-6. PubMed ID: 3016708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional stability of foreign genes in transgenic tobacco plants.
    Vyskot B; Brzobohatý B; Karlovská L; Bezdĕk M
    Folia Biol (Praha); 1989; 35(6):360-72. PubMed ID: 2561278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable transformation of the moss Physcomitrella patens.
    Schaefer D; Zryd JP; Knight CD; Cove DJ
    Mol Gen Genet; 1991 May; 226(3):418-24. PubMed ID: 2038304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene rescue in plants by direct gene transfer of total genomic DNA into protoplasts.
    Gallois P; Lindsey K; Malone R; Kreis M; Jones MG
    Nucleic Acids Res; 1992 Aug; 20(15):3977-82. PubMed ID: 1508682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted transformation in Coprinus cinereus.
    Binninger DM; Le Chevanton L; Skrzynia C; Shubkin CD; Pukkila PJ
    Mol Gen Genet; 1991 Jun; 227(2):245-51. PubMed ID: 2062305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration and expression of a rabbit liver cytochrome P-450 gene in transgenic Nicotiana tabacum.
    Saito K; Noji M; Ohmori S; Imai Y; Murakoshi I
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):7041-5. PubMed ID: 1714583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of flanking sequences on variability in expression levels of an introduced gene in transgenic tobacco plants.
    Dean C; Jones J; Favreau M; Dunsmuir P; Bedbrook J
    Nucleic Acids Res; 1988 Oct; 16(19):9267-83. PubMed ID: 3174450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems.
    O'Neill C; Horváth GV; Horváth E; Dix PJ; Medgyesy P
    Plant J; 1993 May; 3(5):729-38. PubMed ID: 8397038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Phenotypic changes in transgenic tobacco plants with an antisense form of the hmg1 gene].
    Poroĭko VA; Rukavtsova EB; Orlova IV; Bur'ianov IaI
    Genetika; 2000 Sep; 36(9):1200-5. PubMed ID: 11042806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.