These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31867509)

  • 1. Controllable "Clicked-to-Assembled" Plasmonic Core-Satellite Nanostructures and Its Surface-Enhanced Fluorescence in Living Cells.
    Yang X; Li J; Deng L; Su D; Dong C; Ren J
    ACS Omega; 2019 Dec; 4(25):21161-21168. PubMed ID: 31867509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core-satellite nanostructures and their biomedical applications.
    Gu Q; Zhu J; Weng GJ; Li JJ; Zhao JW
    Mikrochim Acta; 2022 Nov; 189(12):470. PubMed ID: 36435950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core-satellite-satellite hierarchical nanostructures: assembly, plasmon coupling, and gap-selective surface-enhanced Raman scattering.
    Trinh HD; Kim S; Park J; Yoon S
    Nanoscale; 2022 Nov; 14(45):17003-17012. PubMed ID: 36354377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Nanoparticles: Basics to Applications (I).
    Chang H; Rho WY; Son BS; Kim J; Lee SH; Jeong DH; Jun BH
    Adv Exp Med Biol; 2021; 1309():133-159. PubMed ID: 33782871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of Plasmonic Core-Satellite Nanostructures on Substrates Based on DNA-Directed Self-Assembly as a Sensitive and Reproducible Biosensor.
    Zhang T; Li H; Hou S; Dong Y; Pang G; Zhang Y
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27131-9. PubMed ID: 26583430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled assembly and plasmonic properties of asymmetric core-satellite nanoassemblies.
    Yoon JH; Lim J; Yoon S
    ACS Nano; 2012 Aug; 6(8):7199-208. PubMed ID: 22827455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Click chemistry-mediated tumor-targeting of SN38-loaded nanoparticles using trastuzumab.
    Yoo J; Choi S; Son J; Yi G; Kim E; Koo H
    Biochem Biophys Res Commun; 2019 Jul; 515(1):207-213. PubMed ID: 31146921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibody-Based In Vivo Imaging of Central Nervous System Targets-Evaluation of a Pretargeting Approach Utilizing a TCO-Conjugated Brain Shuttle Antibody and Radiolabeled Tetrazines.
    Bredack C; Edelmann MR; Borroni E; Gobbi LC; Honer M
    Pharmaceuticals (Basel); 2022 Nov; 15(12):. PubMed ID: 36558900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self assembly of plasmonic core-satellite nano-assemblies mediated by hyperbranched polymer linkers.
    Dey P; Zhu S; Thurecht KJ; Fredericks PM; Blakey I
    J Mater Chem B; 2014 May; 2(19):2827-2837. PubMed ID: 32261477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Metal-Semiconductor Plasmonic Resonance Coupling through Surface-Enhanced Raman Scattering.
    Zhu L; Meng Z; Hu S; Zhao T; Zhao B
    ACS Appl Mater Interfaces; 2023 May; 15(18):22730-22736. PubMed ID: 37125659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive Glycoprotein Sandwich Assays by the Synergistic Effect of In Situ Generation of Raman Probes and Plasmonic Coupling of Ag Core-Au Satellite Nanostructures.
    Bi X; Li X; Chen D; Du X
    ACS Appl Mater Interfaces; 2016 May; 8(17):10683-9. PubMed ID: 27064515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Pretargeted Imaging Strategy for Immune Checkpoint Ligand PD-L1 Expression in Tumor Based on Bioorthogonal Diels-Alder Click Chemistry.
    Qiu L; Tan H; Lin Q; Si Z; Mao W; Wang T; Fu Z; Cheng D; Shi H
    Mol Imaging Biol; 2020 Aug; 22(4):842-853. PubMed ID: 31741201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA Assembly of Plasmonic Nanostructures Enables
    Tan Y; Zhou J; Xing X; Wang J; Huang J; Liu H; Chen J; Dong M; Xiang Q; Dong H; Zhang X
    Anal Chem; 2023 Aug; 95(30):11236-11242. PubMed ID: 37467354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Clicked" plasmonic core-satellites: covalently assembled gold nanoparticles.
    Gandra N; Singamaneni S
    Chem Commun (Camb); 2012 Dec; 48(94):11540-2. PubMed ID: 23090071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance Surface-Enhanced Raman Scattering Substrates Based on the ZnO/Ag Core-Satellite Nanostructures.
    Sun Q; Xu Y; Gao Z; Zhou H; Zhang Q; Xu R; Zhang C; Yao H; Liu M
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-Driven Two-Layer Core-Satellite Gold Nanostructures for Ultrasensitive MicroRNA Detection in Living Cells.
    Meng D; Ma W; Wu X; Xu C; Kuang H
    Small; 2020 Jun; 16(23):e2000003. PubMed ID: 32374494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Efficient Method for Labeling Single Domain Antibody Fragments with
    Zhou Z; Devoogdt N; Zalutsky MR; Vaidyanathan G
    Bioconjug Chem; 2018 Dec; 29(12):4090-4103. PubMed ID: 30384599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.