These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 31867583)

  • 21. Fabrication of an rhBMP-2 loaded porous β-TCP microsphere-hyaluronic acid-based powder gel composite and evaluation of implant osseointegration.
    Lee JH; Kim J; Baek HR; Lee KM; Seo JH; Lee HK; Lee AY; Zheng GB; Chang BS; Lee CK
    J Mater Sci Mater Med; 2014 Sep; 25(9):2141-51. PubMed ID: 24928668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Does implantation site influence bone ingrowth into 3D-printed porous implants?
    Walsh WR; Pelletier MH; Wang T; Lovric V; Morberg P; Mobbs RJ
    Spine J; 2019 Nov; 19(11):1885-1898. PubMed ID: 31255790
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo study of dual functionalized mussel-derived bioactive peptides promoting 3D-printed porous Ti6Al4V scaffolds for repair of rabbit femoral defects.
    Zhang RZ; Shi Q; Zhao H; Pan GQ; Shao LH; Wang JF; Liu HW
    J Biomater Appl; 2022 Nov; 37(5):942-958. PubMed ID: 35856165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biological Response to Recombinant Human Bone Morphogenetic Protein-2 on Bone-Implant Osseointegration in Ovariectomized Experimental Design.
    Song Y; Wan L; Zhang S; Du Y
    J Craniofac Surg; 2019 Jan; 30(1):141-144. PubMed ID: 30616310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of implants coated with recombinant human bone morphogenetic protein-2 and vacuum-dried using the critical-size supraalveolar peri-implant defect model in dogs.
    Decker JF; Lee J; Cortella CA; Polimeni G; Rohrer MD; Wozney JM; Hall J; Susin C; Wikesjö UM
    J Periodontol; 2010 Dec; 81(12):1839-49. PubMed ID: 20629551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting.
    Shah FA; Omar O; Suska F; Snis A; Matic A; Emanuelsson L; Norlindh B; Lausmaa J; Thomsen P; Palmquist A
    Acta Biomater; 2016 May; 36():296-309. PubMed ID: 27000553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo study of a self-stabilizing artificial vertebral body fabricated by electron beam melting.
    Yang J; Cai H; Lv J; Zhang K; Leng H; Sun C; Wang Z; Liu Z
    Spine (Phila Pa 1976); 2014 Apr; 39(8):E486-92. PubMed ID: 24430723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoscale Morphologies on the Surface of 3D-Printed Titanium Implants for Improved Osseointegration: A Systematic Review of the Literature.
    Yang S; Jiang W; Ma X; Wang Z; Sah RL; Wang J; Sun Y
    Int J Nanomedicine; 2023; 18():4171-4191. PubMed ID: 37525692
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface treatment of 3D printed porous Ti6Al4V implants by ultraviolet photofunctionalization for improved osseointegration.
    Yin C; Zhang T; Wei Q; Cai H; Cheng Y; Tian Y; Leng H; Wang C; Feng S; Liu Z
    Bioact Mater; 2022 Jan; 7():26-38. PubMed ID: 34466715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficacy of rhBMP-2 Loaded PCL/
    Bae EB; Park KH; Shim JH; Chung HY; Choi JW; Lee JJ; Kim CH; Jeon HJ; Kang SS; Huh JB
    Biomed Res Int; 2018; 2018():2876135. PubMed ID: 29682530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term biocompatibility and osseointegration of electron beam melted, free-form-fabricated solid and porous titanium alloy: experimental studies in sheep.
    Palmquist A; Snis A; Emanuelsson L; Browne M; Thomsen P
    J Biomater Appl; 2013 May; 27(8):1003-16. PubMed ID: 22207608
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of rhBMP-2 on Guided Bone Regeneration for Placement and Functional Loading of Dental Implants: A Radiographic and Histologic Study in Dogs.
    Ben Amara H; Lee JW; Kim JJ; Kang YM; Kang EJ; Koo KT
    Int J Oral Maxillofac Implants; 2017; 32(6):e265-e276. PubMed ID: 29140389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peri-implant reactivity and osteoinductive potential of immobilized rhBMP-2 on titanium carriers.
    Chatzinikolaidou M; Lichtinger TK; Müller RT; Jennissen HP
    Acta Biomater; 2010 Nov; 6(11):4405-21. PubMed ID: 20558328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of beta-tricalcium phosphate microsphere-hyaluronic acid-based powder gel composite as a carrier for rhBMP-2 injection and evaluation using long bone segmental defect model.
    Han SH; Jung SH; Lee JH
    J Biomater Sci Polym Ed; 2019 Jun; 30(8):679-693. PubMed ID: 30939993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering.
    Wang C; Zhao Q; Wang M
    Biofabrication; 2017 Jun; 9(2):025031. PubMed ID: 28589918
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of recombinant human bone morphogenetic protein-2 in dehiscence defects with non-submerged immediate implants: an experimental study in Cynomolgus monkeys.
    Hanisch O; Sorensen RG; Kinoshita A; Spiekermann H; Wozney JM; Wikesjö UM
    J Periodontol; 2003 May; 74(5):648-57. PubMed ID: 12816297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-Dimension-Printed Porous Poly(Propylene Fumarate) Scaffolds with Delayed rhBMP-2 Release for Anterior Cruciate Ligament Graft Fixation.
    Parry JA; Olthof MG; Shogren KL; Dadsetan M; Van Wijnen A; Yaszemski M; Kakar S
    Tissue Eng Part A; 2017 Apr; 23(7-8):359-365. PubMed ID: 28081675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D-Printed Personalized Lattice Implant as an Innovative Strategy to Reconstruct Geographic Defects in Load-Bearing Bones.
    Li Z; Lu M; Zhang Y; Wang J; Wang Y; Gong T; He X; Luo Y; Zhou Y; Min L; Tu C
    Orthop Surg; 2024 Apr; 16(4):821-829. PubMed ID: 38296795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface.
    Shah FA; Snis A; Matic A; Thomsen P; Palmquist A
    Acta Biomater; 2016 Jan; 30():357-367. PubMed ID: 26577985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Osseointegration of dental implants complexed with rhBMP-2: a comparative histomorphometric and radiographic evaluation.
    Sykaras N; Woody RD; Lacopino AM; Triplett RG; Nunn ME
    Int J Oral Maxillofac Implants; 2004; 19(5):667-78. PubMed ID: 15508982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.