BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31867585)

  • 1. Flexible, low volume detection of chronobiology biomarkers from human sweat.
    Upasham S; Thai K; Muthyala R; Prasad S
    Analyst; 2020 Feb; 145(3):784-796. PubMed ID: 31867585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Four-Channel Electrical Impedance Spectroscopy Module for Cortisol Biosensing in Sweat-Based Wearable Applications.
    Sankhala D; Muthukumar S; Prasad S
    SLAS Technol; 2018 Dec; 23(6):529-539. PubMed ID: 29447045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SLOCK (sensor for circadian clock): passive sweat-based chronobiology tracker.
    Upasham S; Prasad S
    Lab Chip; 2020 Jun; 20(11):1947-1960. PubMed ID: 32323689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Combinatorial Electrochemical Biosensor for Sweat Biomarker Benchmarking.
    Ganguly A; Rice P; Lin KC; Muthukumar S; Prasad S
    SLAS Technol; 2020 Feb; 25(1):25-32. PubMed ID: 31617455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Portable biosensor for monitoring cortisol in low-volume perspired human sweat.
    Kinnamon D; Ghanta R; Lin KC; Muthukumar S; Prasad S
    Sci Rep; 2017 Oct; 7(1):13312. PubMed ID: 29042582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic Low Volume Passive Sweat Based Assays for Multi-Biomarker Detection.
    Bhide A; Cheeran S; Muthukumar S; Prasad S
    Biosensors (Basel); 2019 Jan; 9(1):. PubMed ID: 30654428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomous, Real-Time Monitoring Electrochemical Aptasensor for Circadian Tracking of Cortisol Hormone in Sub-microliter Volumes of Passively Eluted Human Sweat.
    Ganguly A; Lin KC; Muthukumar S; Prasad S
    ACS Sens; 2021 Jan; 6(1):63-72. PubMed ID: 33382251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a Label-Free Electrochemical Impedance Immunosensor Design for Quantifying Cortisol in Tears.
    Cardinell BA; Spano ML; La Belle JT
    Crit Rev Biomed Eng; 2019; 47(3):207-215. PubMed ID: 31679256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of sweat-based circadian diagnostic capability of SLOCK using electrochemical detection modalities.
    Upasham S; Osborne O; Prasad S
    RSC Adv; 2021 Feb; 11(13):7750-7765. PubMed ID: 35423234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flex-GO (Flexible graphene oxide) sensor for electrochemical monitoring lactate in low-volume passive perspired human sweat.
    Lin KC; Muthukumar S; Prasad S
    Talanta; 2020 Jul; 214():120810. PubMed ID: 32278429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passively Addressable Ultra-Low Volume Sweat Chloride Sensor.
    Ganguly A; Prasad S
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31652574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibody-Coated Wearable Organic Electrochemical Transistors for Cortisol Detection in Human Sweat.
    Demuru S; Kim J; El Chazli M; Bruce S; Dupertuis M; Binz PA; Saubade M; Lafaye C; Briand D
    ACS Sens; 2022 Sep; 7(9):2721-2731. PubMed ID: 36054907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A machine learning-based on-demand sweat glucose reporting platform.
    Sankhala D; Sardesai AU; Pali M; Lin KC; Jagannath B; Muthukumar S; Prasad S
    Sci Rep; 2022 Feb; 12(1):2442. PubMed ID: 35165316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of ultra-low volume, multi-bio fluid, cortisol sensing platform.
    Upasham S; Tanak A; Jagannath B; Prasad S
    Sci Rep; 2018 Nov; 8(1):16745. PubMed ID: 30425312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greater lifetime stress exposure predicts blunted cortisol but heightened DHEA responses to acute stress.
    Lam JCW; Shields GS; Trainor BC; Slavich GM; Yonelinas AP
    Stress Health; 2019 Feb; 35(1):15-26. PubMed ID: 30110520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dehydroepiandrosterone and cortisol as markers of HPA axis dysregulation in women with low sexual desire.
    Basson R; O'Loughlin JI; Weinberg J; Young AH; Bodnar T; Brotto LA
    Psychoneuroendocrinology; 2019 Jun; 104():259-268. PubMed ID: 30909007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sweating Out the Circadian Rhythm: A Technical Review.
    Upasham S; Churcher NKM; Rice P; Prasad S
    ACS Sens; 2021 Mar; 6(3):659-672. PubMed ID: 33645964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Touch-Based Stressless Cortisol Sensing.
    Tang W; Yin L; Sempionatto JR; Moon JM; Teymourian H; Wang J
    Adv Mater; 2021 May; 33(18):e2008465. PubMed ID: 33786887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achievements and Challenges for Real-Time Sensing of Analytes in Sweat within Wearable Platforms.
    Brothers MC; DeBrosse M; Grigsby CC; Naik RR; Hussain SM; Heikenfeld J; Kim SS
    Acc Chem Res; 2019 Feb; 52(2):297-306. PubMed ID: 30688433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Portable 3D Microfluidic Origami Biosensor for Cortisol Detection in Human Sweat.
    Weng X; Fu Z; Zhang C; Jiang W; Jiang H
    Anal Chem; 2022 Mar; 94(8):3526-3534. PubMed ID: 35170939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.