These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31867588)

  • 1. Enhanced thermopower in covalent graphite-molecule contacts.
    Droghetti A; Rungger I
    Phys Chem Chem Phys; 2020 Jan; 22(3):1466-1474. PubMed ID: 31867588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable anchoring chemistry for room temperature charge transport through graphite-molecule contacts.
    Rudnev AV; Kaliginedi V; Droghetti A; Ozawa H; Kuzume A; Haga MA; Broekmann P; Rungger I
    Sci Adv; 2017 Jun; 3(6):e1602297. PubMed ID: 28630901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the Electronic Structure of Single-Molecule Junctions Based on Current-Voltage and Thermopower Measurements: Application to C
    Komoto Y; Isshiki Y; Fujii S; Nishino T; Kiguchi M
    Chem Asian J; 2017 Feb; 12(4):440-445. PubMed ID: 28035743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoelectricity in fullerene-metal heterojunctions.
    Yee SK; Malen JA; Majumdar A; Segalman RA
    Nano Lett; 2011 Oct; 11(10):4089-94. PubMed ID: 21882860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Thermoelectricity in Metal-[60]Fullerene-Graphene Molecular Junctions.
    Svatek SA; Sacchetti V; Rodríguez-Pérez L; Illescas BM; Rincón-García L; Rubio-Bollinger G; González MT; Bailey S; Lambert CJ; Martín N; Agraït N
    Nano Lett; 2023 Apr; 23(7):2726-2732. PubMed ID: 36970777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Length-dependent thermopower of highly conducting Au-C bonded single molecule junctions.
    Widawsky JR; Chen W; Vázquez H; Kim T; Breslow R; Hybertsen MS; Venkataraman L
    Nano Lett; 2013 Jun; 13(6):2889-94. PubMed ID: 23682792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Thermopower of Saturated Molecules by Noncovalent Anchor-Induced Electron Doping of Single-Layer Graphene Electrode.
    Park S; Kim HR; Kim J; Hong BH; Yoon HJ
    Adv Mater; 2021 Oct; 33(41):e2103177. PubMed ID: 34453364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Thermoelectricity in EGaIn-Based Molecular Junctions.
    Jang J; He P; Yoon HJ
    Acc Chem Res; 2023 Jun; 56(12):1613-1622. PubMed ID: 37276526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MoS
    Wu Q; Sadeghi H; Lambert CJ
    Nanoscale; 2018 Apr; 10(16):7575-7580. PubMed ID: 29637971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the Seebeck coefficient of naphthalenediimide by electrochemical gating and doping.
    Al-Galiby QH; Sadeghi H; Manrique DZ; Lambert CJ
    Nanoscale; 2017 Apr; 9(14):4819-4825. PubMed ID: 28352900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum and Phonon Interference-Enhanced Molecular-Scale Thermoelectricity.
    Sadeghi H
    J Phys Chem C Nanomater Interfaces; 2019 May; 123(20):12556-12562. PubMed ID: 32064012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics.
    Jia C; Ma B; Xin N; Guo X
    Acc Chem Res; 2015 Sep; 48(9):2565-75. PubMed ID: 26190024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermopower of amine-gold-linked aromatic molecular junctions from first principles.
    Quek SY; Choi HJ; Louie SG; Neaton JB
    ACS Nano; 2011 Jan; 5(1):551-7. PubMed ID: 21171633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge injection and transport properties of large area organic junctions based on aryl thin films covalently attached to a multilayer graphene electrode.
    Barraud C; Lemaitre M; Bonnet R; Rastikian J; Salhani C; Lau S; van Nguyen Q; Decorse P; Lacroix JC; Della Rocca ML; Lafarge P; Martin P
    Nanoscale Adv; 2019 Jan; 1(1):414-420. PubMed ID: 36132450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermopower of Molecular Junction in Harsh Thermal Environments.
    Park S; Kang S; Yoon HJ
    Nano Lett; 2022 May; 22(10):3953-3960. PubMed ID: 35575639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoelectricity in molecular junctions.
    Reddy P; Jang SY; Segalman RA; Majumdar A
    Science; 2007 Mar; 315(5818):1568-71. PubMed ID: 17303718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High thermopower of mechanically stretched single-molecule junctions.
    Tsutsui M; Morikawa T; He Y; Arima A; Taniguchi M
    Sci Rep; 2015 Jun; 5():11519. PubMed ID: 26112999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic control of thermoelectricity in molecular junctions.
    Kim Y; Jeong W; Kim K; Lee W; Reddy P
    Nat Nanotechnol; 2014 Nov; 9(11):881-5. PubMed ID: 25282046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoelectricity at the molecular scale: a large Seebeck effect in endohedral metallofullerenes.
    Lee SK; Buerkle M; Yamada R; Asai Y; Tada H
    Nanoscale; 2015 Dec; 7(48):20497-502. PubMed ID: 26583505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field-Effect Control of Graphene-Fullerene Thermoelectric Nanodevices.
    Gehring P; Harzheim A; Spièce J; Sheng Y; Rogers G; Evangeli C; Mishra A; Robinson BJ; Porfyrakis K; Warner JH; Kolosov OV; Briggs GAD; Mol JA
    Nano Lett; 2017 Nov; 17(11):7055-7061. PubMed ID: 28982009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.