BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31867593)

  • 1. A self-driven microfluidic surface-enhanced Raman scattering device for Hg
    Li X; Yuan G; Yu W; Xing J; Zou Y; Zhao C; Kong W; Yu Z; Guo C
    Lab Chip; 2020 Jan; 20(2):414-423. PubMed ID: 31867593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attomolar Sensing Based on Liquid Interface-Assisted Surface-Enhanced Raman Scattering in Microfluidic Chip by Femtosecond Laser Processing.
    Bai S; Serien D; Ma Y; Obata K; Sugioka K
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42328-42338. PubMed ID: 32799517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering.
    Chang HW; Tsai YC; Cheng CW; Lin CY; Lin YW; Wu TM
    J Colloid Interface Sci; 2011 Aug; 360(1):305-8. PubMed ID: 21546031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational design of wettability-patterned microchips for high-performance attomolar surface-enhanced Raman detection.
    Shi XS; Zhao YF; Zhang HY; Xu XF
    Talanta; 2023 Jun; 258():124417. PubMed ID: 36931060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels.
    Xu BB; Ma ZC; Wang L; Zhang R; Niu LG; Yang Z; Zhang YL; Zheng WH; Zhao B; Xu Y; Chen QD; Xia H; Sun HB
    Lab Chip; 2011 Oct; 11(19):3347-51. PubMed ID: 21863148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of plasmon length-based surface enhanced Raman scattering for multiplex detection on microfluidic device.
    Nguyen AH; Lee J; Il Choi H; Seok Kwak H; Jun Sim S
    Biosens Bioelectron; 2015 Aug; 70():358-65. PubMed ID: 25841120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720.
    Fan M; Wang P; Escobedo C; Sinton D; Brolo AG
    Lab Chip; 2012 Apr; 12(8):1554-60. PubMed ID: 22398836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic integrated D-shaped optical fiber SERS probe with high sensitivity and ability of multi-molecule detection.
    Bo H; Ke Y; Yong Z; Jie Z
    Opt Express; 2023 Aug; 31(17):27304-27311. PubMed ID: 37710809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Metal Writing and Precise Positioning of Gold Nanoparticles within Microfluidic Channels for SERS Sensing of Gaseous Analytes.
    Lee MR; Lee HK; Yang Y; Koh CSL; Lay CL; Lee YH; Phang IY; Ling XY
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39584-39593. PubMed ID: 29020445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules.
    Zhou J; Ren K; Zhao Y; Dai W; Wu H
    Anal Bioanal Chem; 2012 Feb; 402(4):1601-9. PubMed ID: 22127578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ synthesis of silver nanoparticle decorated vertical nanowalls in a microfluidic device for ultrasensitive in-channel SERS sensing.
    Parisi J; Su L; Lei Y
    Lab Chip; 2013 Apr; 13(8):1501-8. PubMed ID: 23459704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond laser hybrid fabrication of a 3D microfluidic chip for PCR application.
    Shan C; Zhang C; Liang J; Yang Q; Bian H; Yong J; Hou X; Chen F
    Opt Express; 2020 Aug; 28(18):25716-25722. PubMed ID: 32906856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A SERS-active microfluidic device with tunable surface plasmon resonances.
    Xu BB; Ma ZC; Wang H; Liu XQ; Zhang YL; Zhang XL; Zhang R; Jiang HB; Sun HB
    Electrophoresis; 2011 Nov; 32(23):3378-84. PubMed ID: 22072533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Laser Writing of SERS Hollow Fibers.
    Li J; Mu Y; Liu M; Zhang X
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip.
    Wu L; Wang Z; Zong S; Cui Y
    Biosens Bioelectron; 2014 Dec; 62():13-8. PubMed ID: 24973537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aptamer-based surface-enhanced Raman scattering-microfluidic sensor for sensitive and selective polychlorinated biphenyls detection.
    Fu C; Wang Y; Chen G; Yang L; Xu S; Xu W
    Anal Chem; 2015 Oct; 87(19):9555-8. PubMed ID: 26339871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A surface-enhanced Raman scattering optrode prepared by in situ photoinduced reactions and its application for highly sensitive on-chip detection.
    Wang S; Liu C; Wang H; Chen G; Cong M; Song W; Jia Q; Xu S; Xu W
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11706-13. PubMed ID: 24978908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid, one-step preparation of SERS substrate in microfluidic channel for detection of molecules and heavy metal ions.
    Yan S; Chu F; Zhang H; Yuan Y; Huang Y; Liu A; Wang S; Li W; Li S; Wen W
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117113. PubMed ID: 31141779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Microfluidic SERS Chip for Ultrasensitive Hg
    Zhang H; Wang D; Zhang D; Zhang T; Yang L; Li Z
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2211-2218. PubMed ID: 34964597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Fabrication of two dimensional silver cavity array and its application in SERS detection].
    Gu XF; Shi J; Jiang GQ; Jiang GM; Tian S
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Apr; 33(4):987-90. PubMed ID: 23841413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.