These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 31867668)

  • 1. Machine learning and its applications in plant molecular studies.
    Sun S; Wang C; Ding H; Zou Q
    Brief Funct Genomics; 2020 Jan; 19(1):40-48. PubMed ID: 31867668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning for High-Throughput Stress Phenotyping in Plants.
    Singh A; Ganapathysubramanian B; Singh AK; Sarkar S
    Trends Plant Sci; 2016 Feb; 21(2):110-124. PubMed ID: 26651918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsupervised and semi-supervised learning: the next frontier in machine learning for plant systems biology.
    Yan J; Wang X
    Plant J; 2022 Sep; 111(6):1527-1538. PubMed ID: 35821601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An explainable deep machine vision framework for plant stress phenotyping.
    Ghosal S; Blystone D; Singh AK; Ganapathysubramanian B; Singh A; Sarkar S
    Proc Natl Acad Sci U S A; 2018 May; 115(18):4613-4618. PubMed ID: 29666265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.
    Lee U; Chang S; Putra GA; Kim H; Kim DH
    PLoS One; 2018; 13(4):e0196615. PubMed ID: 29702690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning approaches and their current application in plant molecular biology: A systematic review.
    Silva JCF; Teixeira RM; Silva FF; Brommonschenkel SH; Fontes EPB
    Plant Sci; 2019 Jul; 284():37-47. PubMed ID: 31084877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proximal Methods for Plant Stress Detection Using Optical Sensors and Machine Learning.
    Zubler AV; Yoon JY
    Biosensors (Basel); 2020 Nov; 10(12):. PubMed ID: 33260412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination of plant root zone water status in greenhouse production based on phenotyping and machine learning techniques.
    Guo D; Juan J; Chang L; Zhang J; Huang D
    Sci Rep; 2017 Aug; 7(1):8303. PubMed ID: 28811508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peering Into the Black Box of Artificial Intelligence: Evaluation Metrics of Machine Learning Methods.
    Handelman GS; Kok HK; Chandra RV; Razavi AH; Huang S; Brooks M; Lee MJ; Asadi H
    AJR Am J Roentgenol; 2019 Jan; 212(1):38-43. PubMed ID: 30332290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine and Deep Learning: Artificial Intelligence Application in Biotic and Abiotic Stress Management in Plants.
    Gou C; Zafar S; Hasnain Z; Aslam N; Iqbal N; Abbas S; Li H; Li J; Chen B; Ragauskas AJ; Abbas M
    Front Biosci (Landmark Ed); 2024 Jan; 29(1):20. PubMed ID: 38287813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. eDoctor: machine learning and the future of medicine.
    Handelman GS; Kok HK; Chandra RV; Razavi AH; Lee MJ; Asadi H
    J Intern Med; 2018 Dec; 284(6):603-619. PubMed ID: 30102808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning: A powerful tool for gene function prediction in plants.
    Mahood EH; Kruse LH; Moghe GD
    Appl Plant Sci; 2020 Jul; 8(7):e11376. PubMed ID: 32765975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning bridges omics sciences and plant breeding.
    Yan J; Wang X
    Trends Plant Sci; 2023 Feb; 28(2):199-210. PubMed ID: 36153276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial intelligence and machine learning overview in pathology & laboratory medicine: A general review of data preprocessing and basic supervised concepts.
    Albahra S; Gorbett T; Robertson S; D'Aleo G; Kumar SVS; Ockunzzi S; Lallo D; Hu B; Rashidi HH
    Semin Diagn Pathol; 2023 Mar; 40(2):71-87. PubMed ID: 36870825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of machine learning in understanding plant virus pathogenesis: trends and perspectives on emergence, diagnosis, host-virus interplay and management.
    Ghosh D; Chakraborty S; Kodamana H; Chakraborty S
    Virol J; 2022 Mar; 19(1):42. PubMed ID: 35264189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput image segmentation and machine learning approaches in the plant sciences across multiple scales.
    Buckner E; Tong H; Ottley C; Williams C
    Emerg Top Life Sci; 2021 May; 5(2):239-248. PubMed ID: 33660762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comprehensive Review on Machine Learning in Healthcare Industry: Classification, Restrictions, Opportunities and Challenges.
    An Q; Rahman S; Zhou J; Kang JJ
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systems Biology and Machine Learning in Plant-Pathogen Interactions.
    Mishra B; Kumar N; Mukhtar MS
    Mol Plant Microbe Interact; 2019 Jan; 32(1):45-55. PubMed ID: 30418085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of Digital Twin, Machine-Learning and Industry 4.0 Tools for Anomaly Detection: An Application to a Food Plant.
    Tancredi GP; Vignali G; Bottani E
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.