These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 31867753)

  • 21. Threading using neural nEtwork (TUNE): the measure of protein sequence-structure compatibility.
    Lin K; May AC; Taylor WR
    Bioinformatics; 2002 Oct; 18(10):1350-7. PubMed ID: 12376379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence.
    Rice DW; Eisenberg D
    J Mol Biol; 1997 Apr; 267(4):1026-38. PubMed ID: 9135128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep learning methods for protein torsion angle prediction.
    Li H; Hou J; Adhikari B; Lyu Q; Cheng J
    BMC Bioinformatics; 2017 Sep; 18(1):417. PubMed ID: 28923002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13.
    Hou J; Wu T; Cao R; Cheng J
    Proteins; 2019 Dec; 87(12):1165-1178. PubMed ID: 30985027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein secondary structure prediction with SPARROW.
    Bettella F; Rasinski D; Knapp EW
    J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multifaceted analysis of training and testing convolutional neural networks for protein secondary structure prediction.
    Shapovalov M; Dunbrack RL; Vucetic S
    PLoS One; 2020; 15(5):e0232528. PubMed ID: 32374785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ProteinUnet-An efficient alternative to SPIDER3-single for sequence-based prediction of protein secondary structures.
    Kotowski K; Smolarczyk T; Roterman-Konieczna I; Stapor K
    J Comput Chem; 2021 Jan; 42(1):50-59. PubMed ID: 33058261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous prediction of protein secondary structure and transmembrane spans.
    Leman JK; Mueller R; Karakas M; Woetzel N; Meiler J
    Proteins; 2013 Jul; 81(7):1127-40. PubMed ID: 23349002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GalaxyWater-CNN: Prediction of Water Positions on the Protein Structure by a 3D-Convolutional Neural Network.
    Park S; Seok C
    J Chem Inf Model; 2022 Jul; 62(13):3157-3168. PubMed ID: 35749367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detecting distant-homology protein structures by aligning deep neural-network based contact maps.
    Zheng W; Wuyun Q; Li Y; Mortuza SM; Zhang C; Pearce R; Ruan J; Zhang Y
    PLoS Comput Biol; 2019 Oct; 15(10):e1007411. PubMed ID: 31622328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. OCLSTM: Optimized convolutional and long short-term memory neural network model for protein secondary structure prediction.
    Zhao Y; Liu Y
    PLoS One; 2021; 16(2):e0245982. PubMed ID: 33534819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network.
    Faraggi E; Xue B; Zhou Y
    Proteins; 2009 Mar; 74(4):847-56. PubMed ID: 18704931
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning.
    Huang W; Xue Y; Wu Y
    PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Can computationally designed protein sequences improve secondary structure prediction?
    Bondugula R; Wallqvist A; Lee MS
    Protein Eng Des Sel; 2011 May; 24(5):455-61. PubMed ID: 21282334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks.
    Li Y; Hu J; Zhang C; Yu DJ; Zhang Y
    Bioinformatics; 2019 Nov; 35(22):4647-4655. PubMed ID: 31070716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CAB-Align: A Flexible Protein Structure Alignment Method Based on the Residue-Residue Contact Area.
    Terashi G; Takeda-Shitaka M
    PLoS One; 2015; 10(10):e0141440. PubMed ID: 26502070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study.
    Klepeis JL; Wei Y; Hecht MH; Floudas CA
    Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Multitask Deep-Learning Method for Predicting Membrane Associations and Secondary Structures of Proteins.
    Li B; Mendenhall J; Capra JA; Meiler J
    J Proteome Res; 2021 Aug; 20(8):4089-4100. PubMed ID: 34236204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.