These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 31867818)
1. Txp40, a protein from Photorhabdus akhurstii, conferred potent insecticidal activity against the larvae of Helicoverpa armigera, Spodoptera litura and S. exigua. Shankhu PY; Mathur C; Mandal A; Sagar D; Somvanshi VS; Dutta TK Pest Manag Sci; 2020 Jun; 76(6):2004-2014. PubMed ID: 31867818 [TBL] [Abstract][Full Text] [Related]
2. A toxin complex protein from Photorhabdus akhurstii conferred oral insecticidal activity against Galleria mellonella by targeting the midgut epithelium. Santhoshkumar K; Mathur C; Mandal A; Dutta TK Microbiol Res; 2021 Jan; 242():126642. PubMed ID: 33191102 [TBL] [Abstract][Full Text] [Related]
3. TcaB, an insecticidal protein from Photorhabdus akhurstii causes cytotoxicity in the greater wax moth, Galleria mellonella. Mathur C; Phani V; Kushwah J; Somvanshi VS; Dutta TK Pestic Biochem Physiol; 2019 Jun; 157():219-229. PubMed ID: 31153472 [TBL] [Abstract][Full Text] [Related]
4. A 37 kDa Txp40 protein characterized from Photorhabdus luminescens sub sp. akhurstii conferred injectable and oral toxicity to greater wax moth, Galleria mellonella. Mathur C; Kushwah J; Somvanshi VS; Dutta TK Toxicon; 2018 Nov; 154():69-73. PubMed ID: 30278182 [TBL] [Abstract][Full Text] [Related]
5. Txp40, a ubiquitous insecticidal toxin protein from Xenorhabdus and Photorhabdus bacteria. Brown SE; Cao AT; Dobson P; Hines ER; Akhurst RJ; East PD Appl Environ Microbiol; 2006 Feb; 72(2):1653-62. PubMed ID: 16461722 [TBL] [Abstract][Full Text] [Related]
6. The differential strain virulence of the candidate toxins of Dutta TK; Mathur C; Mandal A; Somvanshi VS 3 Biotech; 2020 Jul; 10(7):299. PubMed ID: 32550116 [No Abstract] [Full Text] [Related]
7. Txp40, an insecticidal toxin protein from Xenorhabdus nematophila: Purification, toxicity assessment and biophysical characterization. Kinkar OU; Prashar A; Kumar A; Hadapad AB; Hire RS; Makde RD Toxicon; 2022 Oct; 218():40-46. PubMed ID: 36096207 [TBL] [Abstract][Full Text] [Related]
8. Identification of Galtox, a new protein toxin from Photorhabdus bacterial symbionts of Heterorhabditis nematodes. Ahuja A; Kushwah J; Mathur C; Chauhan K; Dutta TK; Somvanshi VS Toxicon; 2021 Apr; 194():53-62. PubMed ID: 33610634 [TBL] [Abstract][Full Text] [Related]
9. Insecticidal Activity and Histopathological Effects of Vip3Aa Protein from Song F; Lin Y; Chen C; Shao E; Guan X; Huang Z J Microbiol Biotechnol; 2016 Oct; 26(10):1774-1780. PubMed ID: 27435544 [TBL] [Abstract][Full Text] [Related]
10. PirB-Cry2Aa hybrid protein exhibits enhanced insecticidal activity against Spodoptera exigua larvae. Hu X; Liu Z; Li Y; Ding X; Xia L; Hu S J Invertebr Pathol; 2014 Jul; 120():40-2. PubMed ID: 24879991 [TBL] [Abstract][Full Text] [Related]
11. Bacillus thuringiensis insecticidal crystal proteins affect lifespan and reproductive performance of Helicoverpa armigera and Spodoptera exigua adults. Zhang Y; Ma Y; Wan PJ; Mu LL; Li GQ J Econ Entomol; 2013 Apr; 106(2):614-21. PubMed ID: 23786046 [TBL] [Abstract][Full Text] [Related]
12. Possible Insecticidal Mechanisms Mediated by Immune-Response-Related Cry-Binding Proteins in the Midgut Juice of Plutella xylostella and Spodoptera exigua. Lu K; Gu Y; Liu X; Lin Y; Yu XQ J Agric Food Chem; 2017 Mar; 65(10):2048-2055. PubMed ID: 28231709 [TBL] [Abstract][Full Text] [Related]
13. Expression and activity of a probable toxin from Photorhabdus luminescens. Li M; Wu G; Liu C; Chen Y; Qiu L; Pang Y Mol Biol Rep; 2009 Apr; 36(4):785-90. PubMed ID: 18409059 [TBL] [Abstract][Full Text] [Related]
14. Crystal structures of PirA and PirB toxins from Photorhabdus akhurstii subsp. akhurstii K-1. Prashar A; Kinkar OU; Kumar A; Hadapad AB; Makde RD; Hire RS Insect Biochem Mol Biol; 2023 Nov; 162():104014. PubMed ID: 37778713 [TBL] [Abstract][Full Text] [Related]
15. Insecticidal Toxic Proteins Produced by Photorhabdus luminescens akhurstii, a Symbiont of Heterorhabditis indica. Rajagopal R; Bhatnagar RK J Nematol; 2002 Mar; 34(1):23-7. PubMed ID: 19265903 [TBL] [Abstract][Full Text] [Related]
16. Enhancing Cry1Ac toxicity by expression of the Helicoverpa armigera cadherin fragment in Bacillus thuringiensis. Peng D; Xu X; Ruan L; Yu Z; Sun M Res Microbiol; 2010 Jun; 161(5):383-9. PubMed ID: 20438837 [TBL] [Abstract][Full Text] [Related]
17. The synergistic activity between Cry1Aa and Cry1c from Bacillus thuringiensis against Spodoptera exigua and Helicoverpa armigera. Xue JL; Cai QX; Zheng DS; Yuan ZM Lett Appl Microbiol; 2005; 40(6):460-5. PubMed ID: 15892743 [TBL] [Abstract][Full Text] [Related]
18. Elimination of Gut Microbes with Antibiotics Confers Resistance to Bacillus thuringiensis Toxin Proteins in Helicoverpa armigera (Hubner). Visweshwar R; Sharma HC; Akbar SM; Sreeramulu K Appl Biochem Biotechnol; 2015 Dec; 177(8):1621-37. PubMed ID: 26384494 [TBL] [Abstract][Full Text] [Related]
19. FOXA transcriptional factor modulates insect susceptibility to Bacillus thuringiensis Cry1Ac toxin by regulating the expression of toxin-receptor ABCC2 and ABCC3 genes. Li J; Ma Y; Yuan W; Xiao Y; Liu C; Wang J; Peng J; Peng R; Soberón M; Bravo A; Yang Y; Liu K Insect Biochem Mol Biol; 2017 Sep; 88():1-11. PubMed ID: 28736301 [TBL] [Abstract][Full Text] [Related]
20. The induced knockdown of GmCAD receptor protein encoding gene in Galleria mellonella decreased the insect susceptibility to a Photorhabdus akhurstii oral toxin. Dutta TK; Veeresh A; Mathur C; Phani V; Mandal A; Sagar D; Nebapure SM Virulence; 2021 Dec; 12(1):2957-2971. PubMed ID: 34882066 [No Abstract] [Full Text] [Related] [Next] [New Search]