These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31867886)

  • 1. A Lithium-Organic Primary Battery.
    Sun P; Bai P; Chen Z; Su H; Yang J; Xu K; Xu Y
    Small; 2020 Jan; 16(3):e1906462. PubMed ID: 31867886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic Cathode with Dual-Type Multielectron Reaction Centers for High-Energy-Density Lithium Primary Batteries.
    Xun H; Chen Z; Liu Y; Su H; Yang J; Liu Y; Xu Y
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):29064-29071. PubMed ID: 37293868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries.
    Song Z; Qian Y; Zhang T; Otani M; Zhou H
    Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes?
    Katsuyama Y; Kobayashi H; Iwase K; Gambe Y; Honma I
    Adv Sci (Weinh); 2022 Apr; 9(12):e2200187. PubMed ID: 35266645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anthraquinone-Based Oligomer as a Long Cycle-Life Organic Electrode Material for Use in Rechargeable Batteries.
    Yao M; Sano H; Ando H; Kiyobayashi T; Takeichi N
    Chemphyschem; 2019 Apr; 20(7):967-971. PubMed ID: 30775839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locally Concentrated LiPF
    Hagos TT; Thirumalraj B; Huang CJ; Abrha LH; Hagos TM; Berhe GB; Bezabh HK; Cherng J; Chiu SF; Su WN; Hwang BJ
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):9955-9963. PubMed ID: 30789250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rechargeable Sodium-Ion Battery Based on Polyazaacene Analogue Anode.
    Zhang M; Tong Y; Xie J; Huang W; Zhang Q
    Chemistry; 2021 Dec; 27(67):16754-16759. PubMed ID: 34599542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and electrospinning carboxymethyl cellulose lithium (CMC-Li) modified 9,10-anthraquinone (AQ) high-rate lithium-ion battery.
    Qiu L; Shao Z; Liu M; Wang J; Li P; Zhao M
    Carbohydr Polym; 2014 Feb; 102():986-92. PubMed ID: 24507373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architecting hierarchical shell porosity of hollow prussian blue-derived iron oxide for enhanced Li storage.
    Zhao Z; Liu X; Luan C; Liu X; Wang D; Qin T; Sui L; Zhang W
    J Microsc; 2019 Nov; 276(2):53-62. PubMed ID: 31603242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A density functional theory study on the thermodynamic and dynamic properties of anthraquinone analogue cathode materials for rechargeable lithium ion batteries.
    Yang SJ; Qin XY; He R; Shen W; Li M; Zhao LB
    Phys Chem Chem Phys; 2017 May; 19(19):12480-12489. PubMed ID: 28470283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic Li4C8H2O6 nanosheets for lithium-ion batteries.
    Wang S; Wang L; Zhang K; Zhu Z; Tao Z; Chen J
    Nano Lett; 2013 Sep; 13(9):4404-9. PubMed ID: 23978244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biredox-Ionic Anthraquinone-Coupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for Li-Organic Batteries.
    Wang Z; Fan Q; Guo W; Yang C; Fu Y
    Adv Sci (Weinh); 2022 Jan; 9(1):e2103632. PubMed ID: 34716685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microsized Antimony as a Stable Anode in Fluoroethylene Carbonate Containing Electrolytes for Rechargeable Lithium-/Sodium-Ion Batteries.
    Bian X; Dong Y; Zhao D; Ma X; Qiu M; Xu J; Jiao L; Cheng F; Zhang N
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3554-3562. PubMed ID: 31886641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.
    Zhao Q; Zhu Z; Chen J
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28370809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Inorganic to Organic Iodine: Stabilization of I
    Zhu F; Li Z; Wang Z; Fu Y; Guo W
    J Am Chem Soc; 2024 Apr; ():. PubMed ID: 38597691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer.
    Park SJ; Hwang JY; Yoon CS; Jung HG; Sun YK
    ACS Appl Mater Interfaces; 2018 May; 10(21):17985-17993. PubMed ID: 29701458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A room-temperature sodium rechargeable battery using an SO2-based nonflammable inorganic liquid catholyte.
    Jeong G; Kim H; Lee HS; Han YK; Park JH; Jeon JH; Song J; Lee K; Yim T; Kim KJ; Lee H; Kim YJ; Sohn HJ
    Sci Rep; 2015 Aug; 5():12827. PubMed ID: 26243052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.