These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 31868141)

  • 21. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unusual commonality in active site structural features of substrate promiscuous and specialist enzymes.
    Thakur D; Pandit SB
    J Struct Biol; 2022 Mar; 214(1):107835. PubMed ID: 35104611
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution in the amidohydrolase superfamily: substrate-assisted gain of function in the E183K mutant of a phosphotriesterase-like metal-carboxylesterase.
    Mandrich L; Manco G
    Biochemistry; 2009 Jun; 48(24):5602-12. PubMed ID: 19438255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Directed evolution of cytochrome P450 enzymes for biocatalysis: exploiting the catalytic versatility of enzymes with relaxed substrate specificity.
    Behrendorff JB; Huang W; Gillam EM
    Biochem J; 2015 Apr; 467(1):1-15. PubMed ID: 25793416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular signatures-based prediction of enzyme promiscuity.
    Carbonell P; Faulon JL
    Bioinformatics; 2010 Aug; 26(16):2012-9. PubMed ID: 20551137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal organic frameworks mimicking natural enzymes: a structural and functional analogy.
    Nath I; Chakraborty J; Verpoort F
    Chem Soc Rev; 2016 Jul; 45(15):4127-70. PubMed ID: 27251115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing enzyme promiscuity of SGNH hydrolases.
    Leščić Ašler I; Ivić N; Kovačić F; Schell S; Knorr J; Krauss U; Wilhelm S; Kojić-Prodić B; Jaeger KE
    Chembiochem; 2010 Oct; 11(15):2158-67. PubMed ID: 20931591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme.
    Tokuriki N; Jackson CJ; Afriat-Jurnou L; Wyganowski KT; Tang R; Tawfik DS
    Nat Commun; 2012; 3():1257. PubMed ID: 23212386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Directed evolution of new and improved enzyme functions using an evolutionary intermediate and multidirectional search.
    Porter JL; Boon PL; Murray TP; Huber T; Collyer CA; Ollis DL
    ACS Chem Biol; 2015 Feb; 10(2):611-21. PubMed ID: 25419863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the challenge of exploring the evolutionary trajectory from phosphotriesterase to arylesterase using computer simulations.
    Bora RP; Mills MJ; Frushicheva MP; Warshel A
    J Phys Chem B; 2015 Feb; 119(8):3434-45. PubMed ID: 25620270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution of new enzymes by gene duplication and divergence.
    Copley SD
    FEBS J; 2020 Apr; 287(7):1262-1283. PubMed ID: 32250558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic activity, duplication and evolution of the CYP98 cytochrome P450 family in wheat.
    Morant M; Schoch GA; Ullmann P; Ertunç T; Little D; Olsen CE; Petersen M; Negrel J; Werck-Reichhart D
    Plant Mol Biol; 2007 Jan; 63(1):1-19. PubMed ID: 17160453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermophilic Carboxylesterases from Hydrothermal Vents of the Volcanic Island of Ischia Active on Synthetic and Biobased Polymers and Mycotoxins.
    Distaso MA; Chernikova TN; Bargiela R; Coscolín C; Stogios P; Gonzalez-Alfonso JL; Lemak S; Khusnutdinova AN; Plou FJ; Evdokimova E; Savchenko A; Lunev EA; Yakimov MM; Golyshina OV; Ferrer M; Yakunin AF; Golyshin PN
    Appl Environ Microbiol; 2023 Feb; 89(2):e0170422. PubMed ID: 36719236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An evolutionary biochemist's perspective on promiscuity.
    Copley SD
    Trends Biochem Sci; 2015 Feb; 40(2):72-8. PubMed ID: 25573004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and Functional Characterization of New SsoPox Variant Points to the Dimer Interface as a Driver for the Increase in Promiscuous Paraoxonase Activity.
    Suzumoto Y; Dim O; Roviello GN; Worek F; Sussman JL; Manco G
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32121487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Promiscuity, a Driver of Plant Cytochrome P450 Evolution?
    Werck-Reichhart D
    Biomolecules; 2023 Feb; 13(2):. PubMed ID: 36830762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Promiscuity in the Enzymatic Catalysis of Phosphate and Sulfate Transfer.
    Pabis A; Duarte F; Kamerlin SC
    Biochemistry; 2016 Jun; 55(22):3061-81. PubMed ID: 27187273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrolase-catalysed synthesis of peroxycarboxylic acids: Biocatalytic promiscuity for practical applications.
    Carboni-Oerlemans C; Domínguez de María P; Tuin B; Bargeman G; van der Meer A; van Gemert R
    J Biotechnol; 2006 Nov; 126(2):140-51. PubMed ID: 16730828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase.
    Ghanem E; Raushel FM
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):459-70. PubMed ID: 15982683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catalytic versus inhibitory promiscuity in cytochrome P450s: implications for evolution of new function.
    Foti RS; Honaker M; Nath A; Pearson JT; Buttrick B; Isoherranen N; Atkins WM
    Biochemistry; 2011 Apr; 50(13):2387-93. PubMed ID: 21370922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.