These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31868194)

  • 1. CfbA promotes insertion of cobalt and nickel into ruffled tetrapyrroles in vitro.
    Schuelke-Sanchez AE; Stone AA; Liptak MD
    Dalton Trans; 2020 Jan; 49(4):1065-1076. PubMed ID: 31868194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nickel-sirohydrochlorin formation mechanism of the ancestral class II chelatase CfbA in coenzyme F430 biosynthesis.
    Fujishiro T; Ogawa S
    Chem Sci; 2021 Jan; 12(6):2172-2180. PubMed ID: 34163982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nickel-chelatase activity of SirB variants mimicking the His arrangement in the naturally occurring nickel-chelatase CfbA.
    Oyamada Y; Ogawa S; Fujishiro T
    FEBS Open Bio; 2024 Jun; ():. PubMed ID: 38923868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of sirohydrochlorin ferrochelatase SirB: the last of the structures of the class II chelatase family.
    Fujishiro T; Shimada Y; Nakamura R; Ooi M
    Dalton Trans; 2019 May; 48(18):6083-6090. PubMed ID: 30778451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common chelatase design in the branched tetrapyrrole pathways of heme and anaerobic cobalamin synthesis.
    Schubert HL; Raux E; Wilson KS; Warren MJ
    Biochemistry; 1999 Aug; 38(33):10660-9. PubMed ID: 10451360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution in a family of chelatases facilitated by the introduction of active site asymmetry and protein oligomerization.
    Romão CV; Ladakis D; Lobo SA; Carrondo MA; Brindley AA; Deery E; Matias PM; Pickersgill RW; Saraiva LM; Warren MJ
    Proc Natl Acad Sci U S A; 2011 Jan; 108(1):97-102. PubMed ID: 21173279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidation of the biosynthesis of the methane catalyst coenzyme F
    Moore SJ; Sowa ST; Schuchardt C; Deery E; Lawrence AD; Ramos JV; Billig S; Birkemeyer C; Chivers PT; Howard MJ; Rigby SE; Layer G; Warren MJ
    Nature; 2017 Mar; 543(7643):78-82. PubMed ID: 28225763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the vitamin B12 biosynthetic cobaltochelatase, CbiXS, from Archaeoglobus fulgidus.
    Yin J; Xu LX; Cherney MM; Raux-Deery E; Bindley AA; Savchenko A; Walker JR; Cuff ME; Warren MJ; James MN
    J Struct Funct Genomics; 2006 Mar; 7(1):37-50. PubMed ID: 16835730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insertion of cobalt into tetrapyrroles.
    Morris JA; Lickey BS; Liptak MD
    Vitam Horm; 2022; 119():1-22. PubMed ID: 35337616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metallation of the transition-state inhibitor N-methyl mesoporphyrin by ferrochelatase: implications for the catalytic reaction mechanism.
    Shipovskov S; Karlberg T; Fodje M; Hansson MD; Ferreira GC; Hansson M; Reimann CT; Al-Karadaghi S
    J Mol Biol; 2005 Oct; 352(5):1081-90. PubMed ID: 16140324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nickel(II) chelatase variants directly evolved from murine ferrochelatase: porphyrin distortion and kinetic mechanism.
    McIntyre NR; Franco R; Shelnutt JA; Ferreira GC
    Biochemistry; 2011 Mar; 50(9):1535-44. PubMed ID: 21222436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desulfovibrio vulgaris CbiK
    Lobo SA; Videira MA; Pacheco I; Wass MN; Warren MJ; Teixeira M; Matias PM; Romão CV; Saraiva LM
    Environ Microbiol; 2017 Jan; 19(1):106-118. PubMed ID: 27486032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of cobalamin and sirohaem in Bacillus megaterium: an investigation into the role of the branchpoint chelatases sirohydrochlorin ferrochelatase (SirB) and sirohydrochlorin cobalt chelatase (CbiX).
    Leech HK; Raux-Deery E; Heathcote P; Warren MJ
    Biochem Soc Trans; 2002 Aug; 30(4):610-3. PubMed ID: 12196147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the structural plasticity of an archaeal primordial cobaltochelatase CbiX(S).
    Pisarchik A; Petri R; Schmidt-Dannert C
    Protein Eng Des Sel; 2007 Jun; 20(6):257-65. PubMed ID: 17584754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Definition of the redox states of cobalt-precorrinoids: investigation of the substrate and redox specificity of CbiL from Salmonella typhimurium.
    Spencer P; Stolowich NJ; Sumner LW; Scott AI
    Biochemistry; 1998 Oct; 37(42):14917-27. PubMed ID: 9778368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Porphyromonas gingivalis HmuY haemophore binds gallium(iii), zinc(ii), cobalt(iii), manganese(iii), nickel(ii), and copper(ii) protoporphyrin IX but in a manner different to iron(iii) protoporphyrin IX.
    Wójtowicz H; Bielecki M; Wojaczyński J; Olczak M; Smalley JW; Olczak T
    Metallomics; 2013 Apr; 5(4):343-51. PubMed ID: 23392445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chelatases: distort to select?
    Al-Karadaghi S; Franco R; Hansson M; Shelnutt JA; Isaya G; Ferreira GC
    Trends Biochem Sci; 2006 Mar; 31(3):135-42. PubMed ID: 16469498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis.
    Alawady AE; Grimm B
    Plant J; 2005 Jan; 41(2):282-90. PubMed ID: 15634204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of heme pathway enzymes and cellular glutathione content by metals that do not chelate with tetrapyrroles: blockade of metal effects by thiols.
    Maines MD; Kappas A
    Proc Natl Acad Sci U S A; 1977 May; 74(5):1875-8. PubMed ID: 266710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competitive binding of chromium, cobalt and nickel to serum proteins.
    Yang J; Black J
    Biomaterials; 1994 Mar; 15(4):262-8. PubMed ID: 8031985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.