These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31868351)

  • 1. Enhanced Electrosorption Ability of Carbon Nanocages as an Advanced Electrode Material for Capacitive Deionization.
    Zang X; Xue Y; Ni W; Li C; Hu L; Zhang A; Yang Z; Yan YM
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2180-2190. PubMed ID: 31868351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Capacitive Deionization Using Natural Basswood-Derived, Freestanding, Hierarchically Porous Carbon Electrodes.
    Liu M; Xu M; Xue Y; Ni W; Huo S; Wu L; Yang Z; Yan YM
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31260-31270. PubMed ID: 30141323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced capacitive deionization of a low-concentration brackish water with protonated carbon nitride-decorated graphene oxide electrode.
    Yu J; Liu Y; Zhang X; Liu R; Yang Q; Hu S; Song H; Li P; Li A; Zhang S
    Chemosphere; 2022 Apr; 293():133580. PubMed ID: 35026198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional cubic ordered mesoporous carbon with chitosan for capacitive deionization disinfection of water.
    Cao C; Wu X; Zheng Y; Chen Y
    Environ Sci Pollut Res Int; 2020 May; 27(13):15001-15010. PubMed ID: 32067173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biobased polyporphyrin derived porous carbon electrodes for highly efficient capacitive deionization.
    Zhang W; Jin C; Shi Z; Zhu L; Chen L; Liu Y; Zhang H
    Chemosphere; 2022 Mar; 291(Pt 3):133113. PubMed ID: 34856237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudocapacitive Coating for Effective Capacitive Deionization.
    Li M; Park HG
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2442-2450. PubMed ID: 29272105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of Uniform Hollow Carbon Nanoarchitectures: Different Capacitive Deionization between the Hollow Shell Thickness and Cavity Size.
    Tang Y; Ding J; Zhou W; Cao S; Yang F; Sun Y; Zhang S; Xue H; Pang H
    Adv Sci (Weinh); 2023 Mar; 10(9):e2206960. PubMed ID: 36658723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cu-based MOF-derived architecture with Cu/Cu
    Zhu G; Chen L; Lu T; Zhang L; Hossain MSA; Amin MA; Yamauchi Y; Li Y; Xu X; Pan L
    Environ Res; 2022 Jul; 210():112909. PubMed ID: 35157915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization.
    Han L; Karthikeyan KG; Anderson MA; Gregory KB
    J Colloid Interface Sci; 2014 Sep; 430():93-9. PubMed ID: 24998059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudocapacitive Deionization of Saltwater by Mn
    Chen PA; Liu SH; Wang HP
    ACS Omega; 2023 Apr; 8(14):13315-13322. PubMed ID: 37065037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of polyvinylidene fluoride-derived porous carbon heterostructure with inserted carbon nanotube via phase-inversion coupled with annealing for capacitive deionization application.
    Li Y; Qi J; Zhang W; Zhang M; Li J
    J Colloid Interface Sci; 2019 Oct; 554():353-361. PubMed ID: 31310877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boron-nitride-carbon nanosheets with different pore structure and surface properties for capacitive deionization.
    Zhang Y; Wang G; Wang S; Wang J; Qiu J
    J Colloid Interface Sci; 2019 Sep; 552():604-612. PubMed ID: 31170613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization.
    Hassanvand A; Chen GQ; Webley PA; Kentish SE
    Water Res; 2018 Mar; 131():100-109. PubMed ID: 29277078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Expanding Pores of Dodecahedron-like Carbon Frameworks Derived from MOFs for Enhanced Capacitive Deionization.
    Wang Z; Yan T; Shi L; Zhang D
    ACS Appl Mater Interfaces; 2017 May; 9(17):15068-15078. PubMed ID: 28418233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ZnCl
    Wu S; Yan P; Yang W; Zhou J; Wang H; Che L; Zhu P
    Chemosphere; 2021 Feb; 264(Pt 2):128557. PubMed ID: 33049504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced electrochemical and capacitive deionization performance of metal organic framework/holey graphene composite electrodes.
    Feng J; Liu L; Meng Q
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):447-458. PubMed ID: 32896674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress in materials and architectures for capacitive deionization: A comprehensive review.
    Datar SD; Mane R; Jha N
    Water Environ Res; 2022 Mar; 94(3):e10696. PubMed ID: 35289462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient lithium extraction using redox-active Prussian blue nanoparticles-anchored activated carbon intercalation electrodes via membrane capacitive deionization.
    Rethinasabapathy M; Bhaskaran G; Hwang SK; Ryu T; Huh YS
    Chemosphere; 2023 Sep; 336():139256. PubMed ID: 37331664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.