These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 31868400)

  • 1. Resistivity Saturation in Metallic Liquids Above a Dynamical Crossover Temperature Observed in Measurements Aboard the International Space Station.
    Van Hoesen DC; Gangopadhyay AK; Lohöfer G; Sellers ME; Pueblo CE; Koch S; Galenko PK; Kelton KF
    Phys Rev Lett; 2019 Nov; 123(22):226601. PubMed ID: 31868400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic-scale simulation to study the dynamical properties and local structure of Cu-Zr and Ni-Zr metallic glass-forming alloys.
    Yang MH; Li Y; Li JH; Liu BX
    Phys Chem Chem Phys; 2016 Mar; 18(10):7169-83. PubMed ID: 26888279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breakdown of the Stokes-Einstein relationship and rapid structural ordering in CuZrAl metallic glass-forming liquids.
    Chen FZ; Mauro NA; Bertrand SM; McGrath P; Zimmer L; Kelton KF
    J Chem Phys; 2021 Sep; 155(10):104501. PubMed ID: 34525827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermophysical properties of liquid Zr
    Mohr M; Wunderlich RK; Hofmann DC; Fecht HJ
    NPJ Microgravity; 2019; 5():24. PubMed ID: 31667336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental determination of the electrical resistivity of iron at Earth's core conditions.
    Ohta K; Kuwayama Y; Hirose K; Shimizu K; Ohishi Y
    Nature; 2016 Jun; 534(7605):95-8. PubMed ID: 27251282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T-square resistivity without Umklapp scattering in dilute metallic Bi
    Wang J; Wu J; Wang T; Xu Z; Wu J; Hu W; Ren Z; Liu S; Behnia K; Lin X
    Nat Commun; 2020 Jul; 11(1):3846. PubMed ID: 32737301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermophysical properties of a Si
    Luo Y; Damaschke B; Lohöfer G; Samwer K
    NPJ Microgravity; 2020; 6():10. PubMed ID: 32219152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal nature of dynamic heterogeneity in glass-forming liquids: A comparative study of metallic and polymeric glass-forming liquids.
    Wang X; Xu WS; Zhang H; Douglas JF
    J Chem Phys; 2019 Nov; 151(18):184503. PubMed ID: 31731847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elementary excitations and crossover phenomenon in liquids.
    Iwashita T; Nicholson DM; Egami T
    Phys Rev Lett; 2013 May; 110(20):205504. PubMed ID: 25167427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noncontact technique for measuring the electrical resistivity and magnetic susceptibility of electrostatically levitated materials.
    Rustan GE; Spyrison NS; Kreyssig A; Prozorov R; Goldman AI
    Rev Sci Instrum; 2012 Oct; 83(10):103907. PubMed ID: 23126782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron spin-lattice relaxation mechanisms of nitroxyl radicals in ionic liquids and conventional organic liquids: temperature dependence of a thermally activated process.
    Kundu K; Kattnig DR; Mladenova BY; Grampp G; Das R
    J Phys Chem B; 2015 Mar; 119(12):4501-11. PubMed ID: 25775000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependence of the electrical resistivity and electronic structure of amorphous Fe100-xZrx films and multilayers.
    Kapaklis V; Pálsson GK; Vegelius J; Haverhals MM; Korelis PT; Butorin SM; Modin A; Kavčič M; Zitnik M; Bučar K; Kvashnina KO; Hjörvarsson B
    J Phys Condens Matter; 2012 Dec; 24(49):495402. PubMed ID: 23160094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Measurement of the Electron Energy Relaxation Dynamics in Metallic Wires.
    Pinsolle E; Rousseau A; Lupien C; Reulet B
    Phys Rev Lett; 2016 Jun; 116(23):236601. PubMed ID: 27341248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positive and Negative Temperature Dependence in the Resistivity of Crystallized Zr-Fe-Ni Metallic Glasses.
    Hamed F
    Materials (Basel); 2010 Dec; 3(12):5212-5219. PubMed ID: 28883377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of dynamic crossover phenomena in water and other glass-forming liquids: experiments, MD simulations and theory.
    Chen SH; Zhang Y; Lagi M; Chong SH; Baglioni P; Mallamace F
    J Phys Condens Matter; 2009 Dec; 21(50):504102. PubMed ID: 21836213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical and thermal transport properties of intermetallic RCoGe2 (R = Ce and La) compounds.
    Ramachandran B; Chang PC; Kuo YK; Lue CS
    J Phys Condens Matter; 2014 Jun; 26(25):255601. PubMed ID: 24861445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and dynamical properties of liquid Ni
    Zhang WB; Wang XD; Cao QP; Zhang DX; Fecht HJ; Jiang JZ
    J Phys Condens Matter; 2018 Sep; 30(36):365401. PubMed ID: 30063217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoupling of component diffusion in a glass-forming Zr(46.75)Ti(8.25)Cu(7.5)Ni(10)Be(27.5) melt far above the liquidus temperature.
    Basuki SW; Bartsch A; Yang F; Rätzke K; Meyer A; Faupel F
    Phys Rev Lett; 2014 Oct; 113(16):165901. PubMed ID: 25361269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical, structural and chemical heterogeneities in a binary metallic glass-forming liquid.
    Puosi F; Jakse N; Pasturel A
    J Phys Condens Matter; 2018 Apr; 30(14):145701. PubMed ID: 29465041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crossovers in the dynamics of supercooled liquids probed by an amorphous wall.
    Hocky GM; Berthier L; Kob W; Reichman DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052311. PubMed ID: 25353804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.