These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31868460)

  • 1. Rydberg-Mediated Entanglement in a Two-Dimensional Neutral Atom Qubit Array.
    Graham TM; Kwon M; Grinkemeyer B; Marra Z; Jiang X; Lichtman MT; Sun Y; Ebert M; Saffman M
    Phys Rev Lett; 2019 Dec; 123(23):230501. PubMed ID: 31868460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel Implementation of High-Fidelity Multiqubit Gates with Neutral Atoms.
    Levine H; Keesling A; Semeghini G; Omran A; Wang TT; Ebadi S; Bernien H; Greiner M; Vuletić V; Pichler H; Lukin MD
    Phys Rev Lett; 2019 Oct; 123(17):170503. PubMed ID: 31702233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erasure conversion in a high-fidelity Rydberg quantum simulator.
    Scholl P; Shaw AL; Tsai RB; Finkelstein R; Choi J; Endres M
    Nature; 2023 Oct; 622(7982):273-278. PubMed ID: 37821592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer.
    Graham TM; Song Y; Scott J; Poole C; Phuttitarn L; Jooya K; Eichler P; Jiang X; Marra A; Grinkemeyer B; Kwon M; Ebert M; Cherek J; Lichtman MT; Gillette M; Gilbert J; Bowman D; Ballance T; Campbell C; Dahl ED; Crawford O; Blunt NS; Rogers B; Noel T; Saffman M
    Nature; 2022 Apr; 604(7906):457-462. PubMed ID: 35444321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Fidelity Control and Entanglement of Rydberg-Atom Qubits.
    Levine H; Keesling A; Omran A; Bernien H; Schwartz S; Zibrov AS; Endres M; Greiner M; Vuletić V; Lukin MD
    Phys Rev Lett; 2018 Sep; 121(12):123603. PubMed ID: 30296143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-fidelity parallel entangling gates on a neutral-atom quantum computer.
    Evered SJ; Bluvstein D; Kalinowski M; Ebadi S; Manovitz T; Zhou H; Li SH; Geim AA; Wang TT; Maskara N; Levine H; Semeghini G; Greiner M; Vuletić V; Lukin MD
    Nature; 2023 Oct; 622(7982):268-272. PubMed ID: 37821591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Fidelity Bell-State Preparation with ^{40}Ca^{+} Optical Qubits.
    Clark CR; Tinkey HN; Sawyer BC; Meier AM; Burkhardt KA; Seck CM; Shappert CM; Guise ND; Volin CE; Fallek SD; Hayden HT; Rellergert WG; Brown KR
    Phys Rev Lett; 2021 Sep; 127(13):130505. PubMed ID: 34623832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Error-Transparent Quantum Gates for Small Logical Qubit Architectures.
    Kapit E
    Phys Rev Lett; 2018 Feb; 120(5):050503. PubMed ID: 29481172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit.
    Ma S; Liu G; Peng P; Zhang B; Jandura S; Claes J; Burgers AP; Pupillo G; Puri S; Thompson JD
    Nature; 2023 Oct; 622(7982):279-284. PubMed ID: 37821593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast Preparation and Detection of a Rydberg Qubit Using Atomic Ensembles.
    Xu W; Venkatramani AV; Cantú SH; Šumarac T; Klüsener V; Lukin MD; Vuletić V
    Phys Rev Lett; 2021 Jul; 127(5):050501. PubMed ID: 34397223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-Insensitive Single-Atom Spin-Orbit Qubit in Silicon.
    Salfi J; Mol JA; Culcer D; Rogge S
    Phys Rev Lett; 2016 Jun; 116(24):246801. PubMed ID: 27367400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Off-resonant modulated driving gate protocols for two-photon ground-Rydberg transition and finite Rydberg blockade strength.
    Sun Y
    Opt Express; 2023 Jan; 31(2):3114-3121. PubMed ID: 36785309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits.
    Xia T; Lichtman M; Maller K; Carr AW; Piotrowicz MJ; Isenhower L; Saffman M
    Phys Rev Lett; 2015 Mar; 114(10):100503. PubMed ID: 25815916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Fidelity Single-Qubit Gates on Neutral Atoms in a Two-Dimensional Magic-Intensity Optical Dipole Trap Array.
    Sheng C; He X; Xu P; Guo R; Wang K; Xiong Z; Liu M; Wang J; Zhan M
    Phys Rev Lett; 2018 Dec; 121(24):240501. PubMed ID: 30608742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Fidelity, High-Scalability Two-Qubit Gate Scheme for Superconducting Qubits.
    Xu Y; Chu J; Yuan J; Qiu J; Zhou Y; Zhang L; Tan X; Yu Y; Liu S; Li J; Yan F; Yu D
    Phys Rev Lett; 2020 Dec; 125(24):240503. PubMed ID: 33412065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation of a four-qubit linear-optical quantum logic circuit.
    Stárek R; Mičuda M; Miková M; Straka I; Dušek M; Ježek M; Fiurášek J
    Sci Rep; 2016 Sep; 6():33475. PubMed ID: 27647176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entanglement of remote atomic qubits.
    Matsukevich DN; Chanelière T; Jenkins SD; Lan SY; Kennedy TA; Kuzmich A
    Phys Rev Lett; 2006 Jan; 96(3):030405. PubMed ID: 16486672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonantly driven CNOT gate for electron spins.
    Zajac DM; Sigillito AJ; Russ M; Borjans F; Taylor JM; Burkard G; Petta JR
    Science; 2018 Jan; 359(6374):439-442. PubMed ID: 29217586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstration of Two-Atom Entanglement with Ultrafast Optical Pulses.
    Wong-Campos JD; Moses SA; Johnson KG; Monroe C
    Phys Rev Lett; 2017 Dec; 119(23):230501. PubMed ID: 29286704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of a neutral atom controlled-NOT quantum gate.
    Isenhower L; Urban E; Zhang XL; Gill AT; Henage T; Johnson TA; Walker TG; Saffman M
    Phys Rev Lett; 2010 Jan; 104(1):010503. PubMed ID: 20366355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.