These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31868468)

  • 1. Suppression of Coherence Collapse in Semiconductor Fano Lasers.
    Rasmussen TS; Yu Y; Mork J
    Phys Rev Lett; 2019 Dec; 123(23):233904. PubMed ID: 31868468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiconductor laser under resonant feedback from a Fabry-Perot resonator: Stability of continuous-wave operation.
    Tronciu VZ; Wünsche HJ; Wolfrum M; Radziunas M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046205. PubMed ID: 16711915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppressing noise-induced intensity pulsations in semiconductor lasers by means of time-delayed feedback.
    Flunkert V; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066202. PubMed ID: 18233899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical statistics of power dropouts based on the Lang-Kobayashi model.
    Mulet J; Mirasso CR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):5400-5. PubMed ID: 11969499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilizing continuous-wave output in semiconductor lasers by time-delayed feedback.
    Dahms T; Hövel P; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056213. PubMed ID: 19113206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental characterization of the transition to coherence collapse in a semiconductor laser with optical feedback.
    Panozzo M; Quintero-Quiroz C; Tiana-Alsina J; Torrent MC; Masoller C
    Chaos; 2017 Nov; 27(11):114315. PubMed ID: 29195318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and analysis of single mode Fabry-Perot lasers with high speed modulation capability.
    Li Y; Xi Y; Li X; Huang WP
    Opt Express; 2011 Jun; 19(13):12131-40. PubMed ID: 21716450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relevance of symmetry for the synchronization of chaotic optical systems and the related Lang-Kobayashi model limitations.
    Matus M; Moloney JV; Kolesik M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016208. PubMed ID: 12636586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical study of optical feedback coherence in semiconductor laser dynamics.
    Radziunas M; Little DJ; Kane DM
    Opt Lett; 2019 Sep; 44(17):4207-4210. PubMed ID: 31465364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-optical non-linear activation function for neuromorphic photonic computing using semiconductor Fano lasers.
    Rasmussen TS; Yu Y; Mork J
    Opt Lett; 2020 Jul; 45(14):3844-3847. PubMed ID: 32667299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical properties of low-frequency fluctuations during single-mode operation in distributed-feedback lasers: experiments and modeling.
    Heil T; Fischer I; Elãâssser W; Mulet J; Mirasso CR
    Opt Lett; 1999 Sep; 24(18):1275-7. PubMed ID: 18079778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of quantum-dot semiconductor lasers to optical feedback.
    O'Brien D; Hegarty SP; Huyet G; Uskov AV
    Opt Lett; 2004 May; 29(10):1072-4. PubMed ID: 15181989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherence collapse and low-frequency fluctuations in quantum-dash based lasers emitting at 1.57 mum.
    Azouigui S; Kelleher B; Hegarty SP; Huyet G; Dagens B; Lelarge F; Accard A; Make D; Le Gouezigou O; Merghem K; Martinez A; Zou Q; Ramdane A
    Opt Express; 2007 Oct; 15(21):14155-62. PubMed ID: 19550688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-delay signature suppression in delayed-feedback semiconductor lasers as a paradigm for feedback control in complex physiological networks.
    Hong Y; Zhong Z; Shore KA
    Front Netw Physiol; 2023; 3():1330375. PubMed ID: 38274037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of semiconductor lasers with external multicavities.
    Többens A; Parlitz U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016210. PubMed ID: 18764038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Pulsations in Terahertz Quantum Cascade Lasers under Strong Optical Feedback: The Effect of Multiple Reflections in the External Cavity.
    Qi X; Loh HY; Taimre T; Bertling K; Indjin D; Rakić AD
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time delay signature concealment of optical feedback induced chaos in an external cavity semiconductor laser.
    Wu JG; Xia GQ; Tang X; Lin XD; Deng T; Fan L; Wu ZM
    Opt Express; 2010 Mar; 18(7):6661-6. PubMed ID: 20389689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of two types of synchronization of external-cavity semiconductor lasers.
    Locquet A; Masoller C; Mégret P; Blondel M
    Opt Lett; 2002 Jan; 27(1):31-3. PubMed ID: 18007706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of feedback optical phase on the relaxation oscillation frequency of a semiconductor laser and its application.
    Liu B; Ruan Y; Yu Y; Wang B; An L
    Opt Express; 2021 Feb; 29(3):3163-3172. PubMed ID: 33770921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying stochasticity in the dynamics of delay-coupled semiconductor lasers via forbidden patterns.
    Tiana-Alsina J; Buldú JM; Torrent MC; García-Ojalvo J
    Philos Trans A Math Phys Eng Sci; 2010 Jan; 368(1911):367-77. PubMed ID: 20008406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.