BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 31868580)

  • 1. Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block.
    Tomek J; Bueno-Orovio A; Passini E; Zhou X; Minchole A; Britton O; Bartolucci C; Severi S; Shrier A; Virag L; Varro A; Rodriguez B
    Elife; 2019 Dec; 8():. PubMed ID: 31868580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-silico human electro-mechanical ventricular modelling and simulation for drug-induced pro-arrhythmia and inotropic risk assessment.
    Margara F; Wang ZJ; Levrero-Florencio F; Santiago A; Vázquez M; Bueno-Orovio A; Rodriguez B
    Prog Biophys Mol Biol; 2021 Jan; 159():58-74. PubMed ID: 32710902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte.
    Greenstein JL; Hinch R; Winslow RL
    Biophys J; 2006 Jan; 90(1):77-91. PubMed ID: 16214852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational model of the human left-ventricular epicardial myocyte.
    Iyer V; Mazhari R; Winslow RL
    Biophys J; 2004 Sep; 87(3):1507-25. PubMed ID: 15345532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromechanical models of the ventricles.
    Trayanova NA; Constantino J; Gurev V
    Am J Physiol Heart Circ Physiol; 2011 Aug; 301(2):H279-86. PubMed ID: 21572017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-scale approaches for the simulation of cardiac electrophysiology: I - Sub-cellular and stochastic calcium dynamics from cell to organ.
    Colman MA; Holmes M; Whittaker DG; Jayasinghe I; Benson AP
    Methods; 2021 Jan; 185():49-59. PubMed ID: 32126258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model of the electrophysiological alterations in rat ventricular myocytes in type-I diabetes.
    Pandit SV; Giles WR; Demir SS
    Biophys J; 2003 Feb; 84(2 Pt 1):832-41. PubMed ID: 12547767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational biology in the study of cardiac ion channels and cell electrophysiology.
    Rudy Y; Silva JR
    Q Rev Biophys; 2006 Feb; 39(1):57-116. PubMed ID: 16848931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Models of excitation-contraction coupling in cardiac ventricular myocytes.
    Jafri MS
    Methods Mol Biol; 2012; 910():309-35. PubMed ID: 22821602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity analysis revealing the effect of modulating ionic mechanisms on calcium dynamics in simulated human heart failure.
    Mora MT; Ferrero JM; Romero L; Trenor B
    PLoS One; 2017; 12(11):e0187739. PubMed ID: 29117223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling gender effects on electrical activity of single ventricular myocytes.
    Cieniawa J; Baszak J; Olchowik G; Widomska J
    Comput Biol Med; 2013 Sep; 43(8):1063-72. PubMed ID: 23726761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic characterization of the ionic basis of rabbit cellular electrophysiology using two ventricular models.
    Romero L; Carbonell B; Trenor B; Rodríguez B; Saiz J; Ferrero JM
    Prog Biophys Mol Biol; 2011 Oct; 107(1):60-73. PubMed ID: 21749896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation and mechanistic investigation of the arrhythmogenic role of the late sodium current in human heart failure.
    Trenor B; Cardona K; Gomez JF; Rajamani S; Ferrero JM; Belardinelli L; Saiz J
    PLoS One; 2012; 7(3):e32659. PubMed ID: 22427860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limitations in electrophysiological model development and validation caused by differences between simulations and experimental protocols.
    Carro J; Rodríguez-Matas JF; Monasterio V; Pueyo E
    Prog Biophys Mol Biol; 2017 Oct; 129():53-64. PubMed ID: 27899270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel computational model of the human ventricular action potential and Ca transient.
    Grandi E; Pasqualini FS; Bers DM
    J Mol Cell Cardiol; 2010 Jan; 48(1):112-21. PubMed ID: 19835882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational model of pig ventricular cardiomyocyte electrophysiology and calcium handling: Translation from pig to human electrophysiology.
    Gaur N; Qi XY; Benoist D; Bernus O; Coronel R; Nattel S; Vigmond EJ
    PLoS Comput Biol; 2021 Jun; 17(6):e1009137. PubMed ID: 34191797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing a novel comprehensive framework for the investigation of cellular and whole heart electrophysiology in the in situ human heart: historical perspectives, current progress and future prospects.
    Taggart P; Orini M; Hanson B; Hayward M; Clayton R; Dobrzynski H; Yanni J; Boyett M; Lambiase PD
    Prog Biophys Mol Biol; 2014 Aug; 115(2-3):252-60. PubMed ID: 24972083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Models of cardiac excitation-contraction coupling in ventricular myocytes.
    Williams GS; Smith GD; Sobie EA; Jafri MS
    Math Biosci; 2010 Jul; 226(1):1-15. PubMed ID: 20346962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of L-type calcium channel and human ether-a-go-go related gene blockers on the electrical activity of the human heart: a simulation study.
    Zemzemi N; Rodriguez B
    Europace; 2015 Feb; 17(2):326-33. PubMed ID: 25228500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid automata models of cardiac ventricular electrophysiology for real-time computational applications.
    Andalam S; Ramanna H; Malik A; Roop P; Patel N; Trew ML
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5595-5598. PubMed ID: 28269523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.