BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31868881)

  • 41. Utility of DNA methylation to assess placental health.
    Wilson SL; Robinson WP
    Placenta; 2018 Apr; 64 Suppl 1():S23-S28. PubMed ID: 29273273
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Placental mitochondrial adaptations in preeclampsia associated with progression to term delivery.
    Holland OJ; Cuffe JSM; Dekker Nitert M; Callaway L; Kwan Cheung KA; Radenkovic F; Perkins AV
    Cell Death Dis; 2018 Nov; 9(12):1150. PubMed ID: 30455461
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hypermethylation of the HLA-G promoter is associated with preeclampsia.
    Tang Y; Liu H; Li H; Peng T; Gu W; Li X
    Mol Hum Reprod; 2015 Sep; 21(9):736-44. PubMed ID: 26116450
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neurodevelopmental consequences in offspring of mothers with preeclampsia during pregnancy: underlying biological mechanism via imprinting genes.
    Nomura Y; John RM; Janssen AB; Davey C; Finik J; Buthmann J; Glover V; Lambertini L
    Arch Gynecol Obstet; 2017 Jun; 295(6):1319-1329. PubMed ID: 28382413
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mining DNA methylation alterations towards a classification of placental pathologies.
    Wilson SL; Leavey K; Cox BJ; Robinson WP
    Hum Mol Genet; 2018 Jan; 27(1):135-146. PubMed ID: 29092053
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Impact of Maternal-Fetal Genetic Conflict Situations on the Pathogenesis of Preeclampsia.
    Kobayashi H
    Biochem Genet; 2015 Oct; 53(9-10):223-34. PubMed ID: 26109010
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Elevated MicroRNA-181a-5p Contributes to Trophoblast Dysfunction and Preeclampsia.
    Huang X; Wu L; Zhang G; Tang R; Zhou X
    Reprod Sci; 2019 Aug; 26(8):1121-1129. PubMed ID: 30376765
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Placental microRNAs in pregnancies with early onset intrauterine growth restriction and preeclampsia: potential impact on gene expression and pathophysiology.
    Awamleh Z; Gloor GB; Han VKM
    BMC Med Genomics; 2019 Jun; 12(1):91. PubMed ID: 31248403
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Expression profiling of autophagy associated genes in placentas of preeclampsia.
    Goldman-Wohl D; Cesla T; Smith Y; Greenfield C; Dechend R; Staff AC; Sugulle M; Weedon-Fekjær MS; Johnsen GM; Yagel S; Haimov-Kochman R
    Placenta; 2013 Oct; 34(10):959-62. PubMed ID: 23953864
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification and validation of DNA methylation changes in pre-eclampsia.
    Almomani SN; Alsaleh AA; Weeks RJ; Chatterjee A; Day RC; Honda I; Homma H; Fukuzawa R; Slatter TL; Hung NA; Devenish C; Morison IM; Macaulay EC
    Placenta; 2021 Jul; 110():16-23. PubMed ID: 34098319
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Epigenetic mechanisms regulate placental c-myc and hTERT in normal and pathological pregnancies; c-myc as a novel fetal DNA epigenetic marker for pre-eclampsia.
    Rahat B; Hamid A; Ahmad Najar R; Bagga R; Kaur J
    Mol Hum Reprod; 2014 Oct; 20(10):1026-40. PubMed ID: 25024139
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Accelerated placental aging in early onset preeclampsia pregnancies identified by DNA methylation.
    Mayne BT; Leemaqz SY; Smith AK; Breen J; Roberts CT; Bianco-Miotto T
    Epigenomics; 2017 Mar; 9(3):279-289. PubMed ID: 27894195
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of polymorphisms, promoter methylation, and mRNA expression profile of maternal and placental P53 and P21 genes in preeclamptic and normotensive pregnant women.
    Harati-Sadegh M; Kohan L; Teimoori B; Mehrabani M; Salimi S
    J Biomed Sci; 2019 Nov; 26(1):92. PubMed ID: 31703578
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Placental abnormalities differ between small for gestational age fetuses in dichorionic twin and singleton pregnancies.
    Kibel M; Kahn M; Sherman C; Kingdom J; Zaltz A; Barrett J; Melamed N
    Placenta; 2017 Dec; 60():28-35. PubMed ID: 29208236
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Association of fetal-derived hypermethylated RASSF1A concentration in placenta-mediated pregnancy complications.
    Kim MJ; Kim SY; Park SY; Ahn HK; Chung JH; Ryu HM
    Placenta; 2013 Jan; 34(1):57-61. PubMed ID: 23187089
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Epitranscriptomic profiling in human placenta: N6-methyladenosine modification at the 5'-untranslated region is related to fetal growth and preeclampsia.
    Taniguchi K; Kawai T; Kitawaki J; Tomikawa J; Nakabayashi K; Okamura K; Sago H; Hata K
    FASEB J; 2020 Jan; 34(1):494-512. PubMed ID: 31914637
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Roles of microRNAs in preeclampsia.
    Lv Y; Lu C; Ji X; Miao Z; Long W; Ding H; Lv M
    J Cell Physiol; 2019 Feb; 234(2):1052-1061. PubMed ID: 30256424
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Change in OncomicroRNA Expression in the Placenta during Preeclampsia.
    Nizyaeva NV; Kulikova GV; Nagovitsyna MN; Kan NE; Prozorovskaya KN; Shchegolev AI
    Bull Exp Biol Med; 2018 Oct; 165(6):793-797. PubMed ID: 30353329
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression profile of C19MC microRNAs in placental tissue in pregnancy-related complications.
    Hromadnikova I; Kotlabova K; Ondrackova M; Pirkova P; Kestlerova A; Novotna V; Hympanova L; Krofta L
    DNA Cell Biol; 2015 Jun; 34(6):437-57. PubMed ID: 25825993
    [TBL] [Abstract][Full Text] [Related]  

  • 60. miR-125b-1-3p inhibits trophoblast cell invasion by targeting sphingosine-1-phosphate receptor 1 in preeclampsia.
    Li Q; Pan Z; Wang X; Gao Z; Ren C; Yang W
    Biochem Biophys Res Commun; 2014 Oct; 453(1):57-63. PubMed ID: 25251470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.