These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31868983)

  • 21. Effort of breathing in children receiving high-flow nasal cannula.
    Rubin S; Ghuman A; Deakers T; Khemani R; Ross P; Newth CJ
    Pediatr Crit Care Med; 2014 Jan; 15(1):1-6. PubMed ID: 24201859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Work of breathing during HHHFNC and synchronised NIPPV following extubation.
    Charles E; Hunt KA; Rafferty GF; Peacock JL; Greenough A
    Eur J Pediatr; 2019 Jan; 178(1):105-110. PubMed ID: 30374754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lung recruitment and breathing pattern during variable versus continuous flow nasal continuous positive airway pressure in premature infants: an evaluation of three devices.
    Courtney SE; Pyon KH; Saslow JG; Arnold GK; Pandit PB; Habib RH
    Pediatrics; 2001 Feb; 107(2):304-8. PubMed ID: 11158463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diaphragmatic electromyography in preterm infants: The influence of electrode positioning.
    van Leuteren RW; Bekhuis RE; de Waal CG; de Jongh FH; van Kaam AH; Hutten GJ
    Pediatr Pulmonol; 2020 Feb; 55(2):354-359. PubMed ID: 31765520
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of a New Interface Combining High-Flow Nasal Cannula and CPAP.
    Garofalo E; Bruni A; Pelaia C; Cammarota G; Murabito P; Biamonte E; Abdalla K; Longhini F; Navalesi P
    Respir Care; 2019 Oct; 64(10):1231-1239. PubMed ID: 31164484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms of nasal high flow therapy in newborns.
    Mazmanyan P; Darakchyan M; Pinkham MI; Tatkov S
    J Appl Physiol (1985); 2020 Apr; 128(4):822-829. PubMed ID: 32078463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A randomised cross-over study showed no difference in diaphragm activity during weaning from respiratory support.
    Brenne H; Grunewaldt KH; Follestad T; Bergseng H
    Acta Paediatr; 2018 Oct; 107(10):1726-1732. PubMed ID: 29504671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nasal high flow reduces dead space.
    Möller W; Feng S; Domanski U; Franke KJ; Celik G; Bartenstein P; Becker S; Meyer G; Schmid O; Eickelberg O; Tatkov S; Nilius G
    J Appl Physiol (1985); 2017 Jan; 122(1):191-197. PubMed ID: 27856714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid respiratory transition at birth as evaluated by electrical activity of the diaphragm in very preterm infants supported by nasal CPAP.
    Oda A; Parikka V; Lehtonen L; Soukka H
    Respir Physiol Neurobiol; 2018 Dec; 258():1-4. PubMed ID: 30273719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gas flow in preterm infants treated with bubble CPAP: an observational study.
    Payne CD; Owen LS; Hodgson KA; Morley CJ; Davis PG; Manley BJ
    Arch Dis Child Fetal Neonatal Ed; 2021 Mar; 106(2):156-161. PubMed ID: 32847830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Randomised cross-over study of automated oxygen control for preterm infants receiving nasal high flow.
    Reynolds PR; Miller TL; Volakis LI; Holland N; Dungan GC; Roehr CC; Ives K
    Arch Dis Child Fetal Neonatal Ed; 2019 Jul; 104(4):F366-F371. PubMed ID: 30464005
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nasal high-flow therapy to Optimise Stability during Intubation: the NOSI pilot trial.
    Foran J; Moore CM; Ni Chathasaigh CM; Moore S; Purna JR; Curley A
    Arch Dis Child Fetal Neonatal Ed; 2023 May; 108(3):244-249. PubMed ID: 36307187
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Classifying Apnea of Prematurity by Transcutaneous Electromyography of the Diaphragm.
    Kraaijenga JV; Hutten GJ; de Waal CG; de Jongh FH; Onland W; van Kaam AH
    Neonatology; 2018; 113(2):140-145. PubMed ID: 29190622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative Study of the Effects of Continuous Positive Airway Pressure and Nasal High-Flow Therapy on Diaphragmatic Dimensions in Preterm Infants.
    El-Mogy M; El-Halaby H; Attia G; Abdel-Hady H
    Am J Perinatol; 2018 Apr; 35(5):448-454. PubMed ID: 29132179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Work of breathing during CPAP and heated humidified high-flow nasal cannula.
    Shetty S; Hickey A; Rafferty GF; Peacock JL; Greenough A
    Arch Dis Child Fetal Neonatal Ed; 2016 Sep; 101(5):F404-7. PubMed ID: 26769758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Effect of Caffeine on Diaphragmatic Activity and Tidal Volume in Preterm Infants.
    Kraaijenga JV; Hutten GJ; de Jongh FH; van Kaam AH
    J Pediatr; 2015 Jul; 167(1):70-5. PubMed ID: 25982138
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of respiratory muscles in upper airway narrowing induced by inspiratory loading in preterm infants.
    Duara S; Silva Neto G; Claure N
    J Appl Physiol (1985); 1994 Jul; 77(1):30-6. PubMed ID: 7961250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thoracoabdominal Asynchrony Is Not Associated with Oxyhemoglobin Saturation in Recovering Premature Infants.
    Brennan C; Ulm L; Julian S; Hamvas A; Ferkol T; Hoffman J; Linneman L; Kemp J
    Neonatology; 2017; 111(4):297-302. PubMed ID: 28013296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Effect of Initial Oxygen Exposure on Diaphragm Activity in Preterm Infants at Birth.
    van Leuteren RW; Scholten AWJ; Dekker J; Martherus T; de Jongh FH; van Kaam AH; Te Pas AB; Hutten J
    Front Pediatr; 2021; 9():640491. PubMed ID: 33634059
    [No Abstract]   [Full Text] [Related]  

  • 40. Association Between High-Flow Nasal Cannula and End-Expiratory Esophageal Pressures in Premature Infants.
    Iyer NP; Mhanna MJ
    Respir Care; 2016 Mar; 61(3):285-90. PubMed ID: 26508770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.