BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31869227)

  • 21. Exploring the Light-Capturing Properties of Photosynthetic Chlorophyll Clusters Using Large-Scale Correlated Calculations.
    Suomivuori CM; Winter NO; Hättig C; Sundholm D; Kaila VR
    J Chem Theory Comput; 2016 Jun; 12(6):2644-51. PubMed ID: 27153186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of photosynthetic reaction centers: insights from the structure of the heliobacterial reaction center.
    Orf GS; Gisriel C; Redding KE
    Photosynth Res; 2018 Oct; 138(1):11-37. PubMed ID: 29603081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Completion of biosynthetic pathways for bacteriochlorophyll g in Heliobacterium modesticaldum: The C8-ethylidene group formation.
    Tsukatani Y; Yamamoto H; Mizoguchi T; Fujita Y; Tamiaki H
    Biochim Biophys Acta; 2013 Oct; 1827(10):1200-4. PubMed ID: 23820336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of stereochemistry of bacteriochlorophyll gF and 8(1)-hydroxy-chlorophyll aF from Heliobacterium modesticaldum.
    Mizoguchi T; Oh-oka H; Tamiaki H
    Photochem Photobiol; 2005; 81(3):666-73. PubMed ID: 15745422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intensity borrowing via excitonic couplings among soret and Q(y) transitions of bacteriochlorophylls in the pigment aggregates of chlorosomes, the light-harvesting antennae of green sulfur bacteria.
    Shibata Y; Tateishi S; Nakabayashi S; Itoh S; Tamiaki H
    Biochemistry; 2010 Sep; 49(35):7504-15. PubMed ID: 20701269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preferential pathways for light-trapping involving beta-ligated chlorophylls.
    Balaban TS; Braun P; Hättig C; Hellweg A; Kern J; Saenger W; Zouni A
    Biochim Biophys Acta; 2009 Oct; 1787(10):1254-65. PubMed ID: 19481055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Benchmarking Calculations of Excitonic Couplings between Bacteriochlorophylls.
    Kenny EP; Kassal I
    J Phys Chem B; 2016 Jan; 120(1):25-32. PubMed ID: 26651217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-wavelength chlorophylls in photosystem I of cyanobacteria: origin, localization, and functions.
    Karapetyan NV; Bolychevtseva YV; Yurina NP; Terekhova IV; Shubin VV; Brecht M
    Biochemistry (Mosc); 2014 Mar; 79(3):213-20. PubMed ID: 24821447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates. Effects of peripheral substituents on the low-frequency vibrational characteristics.
    Diers JR; Zhu Y; Blankenship RE; Bocian DF
    J Phys Chem; 1996 May; 100(20):8573-9. PubMed ID: 11539301
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The reaction center of green sulfur bacteria(1).
    Hauska G; Schoedl T; Remigy H; Tsiotis G
    Biochim Biophys Acta; 2001 Oct; 1507(1-3):260-77. PubMed ID: 11687219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of a symmetric photosynthetic reaction center-photosystem.
    Gisriel C; Sarrou I; Ferlez B; Golbeck JH; Redding KE; Fromme R
    Science; 2017 Sep; 357(6355):1021-1025. PubMed ID: 28751471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light-driven quinone reduction in heliobacterial membranes.
    Kashey TS; Luu DD; Cowgill JC; Baker PL; Redding KE
    Photosynth Res; 2018 Oct; 138(1):1-9. PubMed ID: 29532352
    [TBL] [Abstract][Full Text] [Related]  

  • 33. P700: the primary electron donor of photosystem I.
    Webber AN; Lubitz W
    Biochim Biophys Acta; 2001 Oct; 1507(1-3):61-79. PubMed ID: 11687208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental and Theoretical Mutation of Exciton States on the Smallest Type-I Photosynthetic Reaction Center Complex of a Green Sulfur Bacterium
    Kimura A; Kitoh-Nishioka H; Kondo T; Oh-Oka H; Itoh S; Azai C
    J Phys Chem B; 2024 Jan; 128(3):731-743. PubMed ID: 38198639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An overview on chlorophylls and quinones in the photosystem I-type reaction centers.
    Ohashi S; Iemura T; Okada N; Itoh S; Furukawa H; Okuda M; Ohnishi-Kameyama M; Ogawa T; Miyashita H; Watanabe T; Itoh S; Oh-oka H; Inoue K; Kobayashi M
    Photosynth Res; 2010 Jun; 104(2-3):305-19. PubMed ID: 20165917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pathways of energy transformation in antenna reaction center complexes of Heliobacillus mobilis.
    Neerken S; Aartsma TJ; Amesz J
    Biochemistry; 2000 Mar; 39(12):3297-303. PubMed ID: 10727221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Femtosecond transient spectroscopy and excitonic interactions in Photosystem I.
    Melkozernov AN; Lin S; Blankenship RE
    J Phys Chem B; 2000 Feb; 104(7):1651-6. PubMed ID: 11543525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrafast Excitation Energy Dynamics in a Diatom Photosystem I-Antenna Complex: A Femtosecond Fluorescence Upconversion Study.
    Nagao R; Kagatani K; Ueno Y; Shen JR; Akimoto S
    J Phys Chem B; 2019 Mar; 123(12):2673-2678. PubMed ID: 30807170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The PshX subunit of the photochemical reaction center from Heliobacterium modesticaldum acts as a low-energy antenna.
    Orf GS; Gisriel CJ; Granstrom J; Baker PL; Redding KE
    Photosynth Res; 2022 Jan; 151(1):11-30. PubMed ID: 34480322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How photosynthetic reaction centers control oxidation power in chlorophyll pairs P680, P700, and P870.
    Ishikita H; Saenger W; Biesiadka J; Loll B; Knapp EW
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):9855-60. PubMed ID: 16788069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.