These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 31869438)
1. Two Distinct Photoprocesses in Cyanobacterial Bilin Pigments: Energy Migration in Light-Harvesting Phycobiliproteins versus Photoisomerization in Phytochromes. Sineshchekov VA; Bekasova OD Photochem Photobiol; 2020 Jul; 96(4):750-767. PubMed ID: 31869438 [TBL] [Abstract][Full Text] [Related]
2. The role of the chromophore in the biological photoreceptor phytochrome: an approach using chemically synthesized tetrapyrroles. Bongards C; Gärtner W Acc Chem Res; 2010 Apr; 43(4):485-95. PubMed ID: 20055450 [TBL] [Abstract][Full Text] [Related]
3. Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. Hirose Y; Rockwell NC; Nishiyama K; Narikawa R; Ukaji Y; Inomata K; Lagarias JC; Ikeuchi M Proc Natl Acad Sci U S A; 2013 Mar; 110(13):4974-9. PubMed ID: 23479641 [TBL] [Abstract][Full Text] [Related]
5. The terminal phycobilisome emitter, LCM: A light-harvesting pigment with a phytochrome chromophore. Tang K; Ding WL; Höppner A; Zhao C; Zhang L; Hontani Y; Kennis JT; Gärtner W; Scheer H; Zhou M; Zhao KH Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15880-5. PubMed ID: 26669441 [TBL] [Abstract][Full Text] [Related]
6. Hydrogen-Bond Network Determines the Early Photoisomerization Processes of Cph1 and AnPixJ Phytochromes. Liu XY; Zhang TS; Fang Q; Fang WH; González L; Cui G Angew Chem Int Ed Engl; 2021 Aug; 60(34):18688-18693. PubMed ID: 34097335 [TBL] [Abstract][Full Text] [Related]
7. Elucidating the origins of phycocyanobilin biosynthesis and phycobiliproteins. Rockwell NC; Martin SS; Lagarias JC Proc Natl Acad Sci U S A; 2023 Apr; 120(17):e2300770120. PubMed ID: 37071675 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence investigation of the recombinant cyanobacterial phytochrome (Cph1) and its C-terminally truncated monomeric species (Cph1Delta2): implication for holoprotein assembly, chromophore-apoprotein interaction and photochemistry. Sineshchekov V; Koppel' L; Esteban B; Hughes J; Lamparter T J Photochem Photobiol B; 2002 May; 67(1):39-50. PubMed ID: 12007466 [TBL] [Abstract][Full Text] [Related]
10. The interplay between chromophore and protein determines the extended excited state dynamics in a single-domain phytochrome. Slavov C; Fischer T; Barnoy A; Shin H; Rao AG; Wiebeler C; Zeng X; Sun Y; Xu Q; Gutt A; Zhao KH; Gärtner W; Yang X; Schapiro I; Wachtveitl J Proc Natl Acad Sci U S A; 2020 Jul; 117(28):16356-16362. PubMed ID: 32591422 [TBL] [Abstract][Full Text] [Related]
11. Color Tuning in Red/Green Cyanobacteriochrome AnPixJ: Photoisomerization at C15 Causes an Excited-State Destabilization. Song C; Narikawa R; Ikeuchi M; Gärtner W; Matysik J J Phys Chem B; 2015 Jul; 119(30):9688-95. PubMed ID: 26115331 [TBL] [Abstract][Full Text] [Related]
12. Involvement of cyanobacterial phytochromes in growth under different light qualities and quantities. Fiedler B; Broc D; Schubert H; Rediger A; Börner T; Wilde A Photochem Photobiol; 2004 Jun; 79(6):551-5. PubMed ID: 15291308 [TBL] [Abstract][Full Text] [Related]
13. Transient Deprotonation of the Chromophore Affects Protein Dynamics Proximal and Distal to the Linear Tetrapyrrole Chromophore in Phytochrome Cph1. Sadeghi M; Balke J; Schneider C; Nagano S; Stellmacher J; Lochnit G; Lang C; Weise C; Hughes J; Alexiev U Biochemistry; 2020 Mar; 59(9):1051-1062. PubMed ID: 32069394 [TBL] [Abstract][Full Text] [Related]
14. A brief history of phytochromes. Rockwell NC; Lagarias JC Chemphyschem; 2010 Apr; 11(6):1172-80. PubMed ID: 20155775 [TBL] [Abstract][Full Text] [Related]
15. Biosynthesis of phycobilins. Formation of the chromophore of phytochrome, phycocyanin and phycoerythrin. Brown SB; Houghton JD; Vernon DI J Photochem Photobiol B; 1990 Apr; 5(1):3-23. PubMed ID: 2111391 [TBL] [Abstract][Full Text] [Related]
16. Genetic engineering of phytochrome biosynthesis in bacteria. Gambetta GA; Lagarias JC Proc Natl Acad Sci U S A; 2001 Sep; 98(19):10566-71. PubMed ID: 11553807 [TBL] [Abstract][Full Text] [Related]
17. Phytochrome assembly. The structure and biological activity of 2(R),3(E)-phytochromobilin derived from phycobiliproteins. Cornejo J; Beale SI; Terry MJ; Lagarias JC J Biol Chem; 1992 Jul; 267(21):14790-8. PubMed ID: 1634523 [TBL] [Abstract][Full Text] [Related]
18. Decomposition of cyanobacterial light harvesting complexes: NblA-dependent role of the bilin lyase homolog NblB. Levi M; Sendersky E; Schwarz R Plant J; 2018 Jun; 94(5):813-821. PubMed ID: 29575252 [TBL] [Abstract][Full Text] [Related]
19. Distinct classes of red/far-red photochemistry within the phytochrome superfamily. Rockwell NC; Shang L; Martin SS; Lagarias JC Proc Natl Acad Sci U S A; 2009 Apr; 106(15):6123-7. PubMed ID: 19339496 [TBL] [Abstract][Full Text] [Related]
20. Agrobacterium phytochrome as an enzyme for the production of ZZE bilins. Lamparter T; Michael N Biochemistry; 2005 Jun; 44(23):8461-9. PubMed ID: 15938635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]