These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 31869804)
1. A Model for R(t) Elements and R(t) -Based Spike-Timing-Dependent Plasticity With Basic Circuit Examples. Ivans RC; Dahl SG; Cantley KD IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):4206-4216. PubMed ID: 31869804 [TBL] [Abstract][Full Text] [Related]
2. Forgetting memristor based STDP learning circuit for neural networks. Zhou W; Wen S; Liu Y; Liu L; Liu X; Chen L Neural Netw; 2023 Jan; 158():293-304. PubMed ID: 36493532 [TBL] [Abstract][Full Text] [Related]
3. Synaptic Plasticity in Memristive Artificial Synapses and Their Robustness Against Noisy Inputs. Du N; Zhao X; Chen Z; Choubey B; Di Ventra M; Skorupa I; Bürger D; Schmidt H Front Neurosci; 2021; 15():660894. PubMed ID: 34335153 [TBL] [Abstract][Full Text] [Related]
5. A compound memristive synapse model for statistical learning through STDP in spiking neural networks. Bill J; Legenstein R Front Neurosci; 2014; 8():412. PubMed ID: 25565943 [TBL] [Abstract][Full Text] [Related]
7. STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns. Hosaka R; Araki O; Ikeguchi T Neural Comput; 2008 Feb; 20(2):415-35. PubMed ID: 18045011 [TBL] [Abstract][Full Text] [Related]
8. Implementation of a spike-based perceptron learning rule using TiO2-x memristors. Mostafa H; Khiat A; Serb A; Mayr CG; Indiveri G; Prodromakis T Front Neurosci; 2015; 9():357. PubMed ID: 26483629 [TBL] [Abstract][Full Text] [Related]
9. Triplet Spike Time-Dependent Plasticity in a Floating-Gate Synapse. Gopalakrishnan R; Basu A IEEE Trans Neural Netw Learn Syst; 2017 Apr; 28(4):. PubMed ID: 26841419 [TBL] [Abstract][Full Text] [Related]
10. A forecast-based STDP rule suitable for neuromorphic implementation. Davies S; Galluppi F; Rast AD; Furber SB Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500 [TBL] [Abstract][Full Text] [Related]
11. Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning. Covi E; Brivio S; Serb A; Prodromakis T; Fanciulli M; Spiga S Front Neurosci; 2016; 10():482. PubMed ID: 27826226 [TBL] [Abstract][Full Text] [Related]
12. Reconciling the STDP and BCM models of synaptic plasticity in a spiking recurrent neural network. Bush D; Philippides A; Husbands P; O'Shea M Neural Comput; 2010 Aug; 22(8):2059-85. PubMed ID: 20438333 [TBL] [Abstract][Full Text] [Related]
13. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. Legenstein R; Pecevski D; Maass W PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203 [TBL] [Abstract][Full Text] [Related]
14. STDP and STDP variations with memristors for spiking neuromorphic learning systems. Serrano-Gotarredona T; Masquelier T; Prodromakis T; Indiveri G; Linares-Barranco B Front Neurosci; 2013; 7():2. PubMed ID: 23423540 [TBL] [Abstract][Full Text] [Related]
15. Spiking Neural Networks with Unsupervised Learning Based on STDP Using Resistive Synaptic Devices and Analog CMOS Neuron Circuit. Kwon MW; Baek MH; Hwang S; Kim S; Park BG J Nanosci Nanotechnol; 2018 Sep; 18(9):6588-6592. PubMed ID: 29677839 [TBL] [Abstract][Full Text] [Related]
16. Single pairing spike-timing dependent plasticity in BiFeO3 memristors with a time window of 25 ms to 125 μs. Du N; Kiani M; Mayr CG; You T; Bürger D; Skorupa I; Schmidt OG; Schmidt H Front Neurosci; 2015; 9():227. PubMed ID: 26175666 [TBL] [Abstract][Full Text] [Related]
17. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking. Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559 [TBL] [Abstract][Full Text] [Related]